Skip to main content
Log in

Polarization of the Electron–Positron Vacuum by a Strong Magnetic Field in the Theory with a Fundamental Mass

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

In the framework of the theory with a fundamental mass in the one-loop approximation, we evaluate the exact Lagrange function of the strong constant magnetic field, replacing the Heisenberg–Euler Lagrangian in the traditional QED. We establish that the derived generalization of the Lagrange function is real for arbitrary values of the magnetic field. In the weak field, the evaluated Lagrangian coincides with the known Heisenberg–Euler formula. In extremely strong fields, the field dependence of the Lagrangian completely disappears; in this range, the Lagrangian tends to the limit value determined by the ratio of the fundamental and lepton masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. Heisenberg and H. Euler, Z. Phys., 98, 714 (1936).

    Google Scholar 

  2. V. I. Ritus, JETP, 42, 774 (1976).

    Google Scholar 

  3. V. I. Ritus, JETP, 46, 423 (1977).

    Google Scholar 

  4. V. I. Ritus, “Effective Lagrange function of intense electromagnetic field in QED,” in: “Frontier Tests of QED and Physics of the Vacuum (Sandanski, Bulgaria, 9-15 June, 1998, E. Zavattini, D. Bakalov, and C. Rizzo, eds.), Heron Press, Sofia (1998); hep-th/9812124 (1998).

    Google Scholar 

  5. V. R. Khalilov, Theor. Math. Phys., 133, 1406 (2002).

    Google Scholar 

  6. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics [in Russian] (3rd ed.), Nauka, Moscow (1989); English transl. prev. ed., Pergamon, Oxford (1982).

    Google Scholar 

  7. M. Greenman and F. Rohrlich, Phys. Rev. D, 8, 1103 (1973).

    Google Scholar 

  8. V. G. Kadyshevsky, Nucl. Phys. B, 141, 477 (1978); “Toward a more profound theory of electromagnetic interactions,” Pub. 78-070-THY, Sept. 1978, FERMILAB, Batavia, Ill. (1978); V. G. Kadyshevskii, Fiz. Elem. Chast. At. Yadra, 11, No. 1, 5 (1980).

    Google Scholar 

  9. V. G. Kadyshevsky and M. D. Mateev, Phys. Lett. B, 106, 139 (1981); Nuovo Cimento A, 87, 350 (1985).

    Google Scholar 

  10. V. G. Kadyshevskii, Fiz. Elem. Chast. At. Yadra, 29, 563 (1998).

    Google Scholar 

  11. A. B. Migdal, JETP, 35, 845 (1972).

    Google Scholar 

  12. I. M. Ternov, V. R. Khalilov, and V. N. Rodionov, Interaction of Charged Particles with a Strong Electromagnetic Field [in Russian], MSU Publ., Moscow (1982).

    Google Scholar 

  13. A. A. Grib, S. G. Mamaev, and V. M. Mostepanenko, Quantum Effects in Strong External Fields [in Russian], Atomizdat, Moscow (1980).

    Google Scholar 

  14. V. I. Ritus, Trudy Fiz. Inst. Lebedev, 111, 5 (1979).

    Google Scholar 

  15. V. G. Kadyshevskii and V. N. Rodionov, “Electromagnetic length and fundamental mass in electrodynamics,” in: “Symmetries and Integrable Systems” (A. N. Sissakian, ed.) [in Russian], Joint Inst. Nucl. Res., Dubna (1999), p. 103.

    Google Scholar 

  16. V. G. Kadyshevskii and V. N. Rodionov, Theor. Math. Phys., 125, 1668 (2000).

    Google Scholar 

  17. G. E. Stedman et al., Phys. Rev. A, 51, 4944 (1995).

    Google Scholar 

  18. V. I. Denisov and I. P. Denisova, Theor. Math. Phys., 129, 1421 (2001); Dokl. Rossiiskoi Akad. Nauk, 378, 4 (2001).

    Google Scholar 

  19. I. M. Ternov, V. G. Bagrov, and V. Ch. Zhukovskii, Vestn. Mosk. Univ. Ser. Fiz. Astron., No. 1, 30 (1966).

  20. K. Hurley et al., Nature, 397, 41 (1999); C. Kouveliotou et al., Nature, 393, 235 (1998).

    Google Scholar 

  21. R. C. Duncan, “Physics in ultra-strong magnetic fields,” astro-ph/0002442 (2000).

  22. I. M. Ternov, V. N. Rodionov, and A. I. Studenikin, “Contribution of neutral weak currents to the anomalous magnetic moment of electron in the external field,” in: Abstracts, Proc. All-Union Conference on Quantum Metrology and Fundamental Physical Constants (Yu. V. Tarbeev, ed.) [in Russian], Mendeleev NPO “VNIIM”, Leningrad (1982), p. 47; Yadern. Fiz., 37, 1270 (1983).

    Google Scholar 

  23. V. A. Obukhov, V. K. Peres-Fernandes, V. N. Rodionov, and V. R. Khalilov, Izv. Vyssh. Uchebn. Zaved. Ser. Fiz., No. 1, 26 (1983).

  24. A. Czarnecki and W. Marciano, Phys. Rev. D, 64, 012014 (2001).

    Google Scholar 

  25. M. Davier and A. Hocker, Phys. Lett. B, 435, 427 (1998).

    Google Scholar 

  26. M. Davier, S. Eidelman, A. Hocker, and Z. Zhang, Eur. Phys. J. C, 27, 497 (2003); hep-ph/0208177 (2002).

    Google Scholar 

  27. B. Krause, Phys. Lett. B, 390, 392 (1997).

    Google Scholar 

  28. E. Bartoš, A. Z. Dubni?ková, S. Dubni?ka, E. A. Kuraev, and E. Zemlyanaya, Nucl. Phys. B, 632, 330 (2002).

    Google Scholar 

  29. E. Bartoš, S. Dubni?ka, A. Z. Dubni?ková, E. A. Kuraev, and E. Zemlyanaya, “Is there any room for new physics in the muon g?2 problem?” hep-ph/0305051 (2003).

  30. C. S. Özben et al. (Muon g?2 Collaboration), “Precision measurement of the anomalous magnetic moment of the muon,” hep-ex/0211044 (2002).

  31. G. W. Bennett et al. (Muon g?2 Collaboration), Phys. Rev. Lett., 89, 1001804 (2002).

    Google Scholar 

  32. L. B. Okun', Leptons and Quarks [in Russian], Nauka, Moscow (1981); English transl., North-Holland, Amsterdam (1982).

    Google Scholar 

  33. V. V. Skalozub, Fiz. Elem. Chast. At. Yadra, 16, 1005 (1985).

    Google Scholar 

  34. Wu-Yang Tsai and A. Yildiz, Phys. Rev. D, 4, 3643 (1971).

    Google Scholar 

  35. V. N. Rodionov, G. A. Kravtsova, and A. M. Mandel', JETP Letters, 75, 363 (2002); Dokl. Rossiiskoi Akad. Nauk, 386, 753 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadyshevsky, V.G., Rodionov, V.N. Polarization of the Electron–Positron Vacuum by a Strong Magnetic Field in the Theory with a Fundamental Mass. Theoretical and Mathematical Physics 136, 1346–1356 (2003). https://doi.org/10.1023/A:1025611618352

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025611618352

Navigation