Skip to main content
Log in

Prostate epithelial stem cell culture

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

The prostate gland is the site of the second most common cancer in men in the UK, with 9,280 deaths recorded in 2000. Another common disease of the prostate is benign prostatic hyperplasia and both conditions are believed to arise as a result of changes in the balance between cell proliferation and differentiation. There are three types of prostatic epithelial cell, proliferative basal, secretory luminal, and neuroendocrine. All three are believed to be derived from a common stem cell through differentiation along different pathways but the mechanisms behind these processes is poorly understood. In particular, there has until recently been very little information about prostate stem cell growth and differentiation. This review will discuss ways of distinguishing these prostate cell types using markers, such as keratins. Methods available for the culture of prostate epithelial cells and for the characterisation of stem cells both in monolayer and three-dimensional models are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahamsson P (1999) Neuroendocrine differentiation in prostatic carcinoma. The Prostate 39: 135–148.

    Article  PubMed  CAS  Google Scholar 

  • Aumuller G, Leonhardt M, Janssen M, Konrad L, Bjartell A & Abrahamsson PA (1999) Neurogenic origin of human prostate endocrine cells. Urology 53: 1041–8.

    Article  PubMed  CAS  Google Scholar 

  • Aumuller G, Leonhardt M, Renneberg H, von Rahden B, Bjartell A & Abrahamsson PA (2001) Semiquantative morphology of human prostatic development and regional distribution of prostatic neuroendocrine cells. The Prostate 46: 108–115.

    Article  PubMed  CAS  Google Scholar 

  • Barrandon Y & Green H (1987) Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci USA 84: 2302–6.

    Article  PubMed  CAS  Google Scholar 

  • Bayne CW, Ross M & Donnelly F et al. (1998) Selective interactions between prostate fibroblast and epithelial cells in co-culture maintain the BPH phenotype. Urol Int 61: 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Bhatt RI, Hart C, Collins A, Ramani VAC, George NJR & Clarke NW (2002) A novel method for the isolation and evaluation of prostatic stem cells. Prostate Cancer and Prostatic Diseases: BPG Sept 2001 Meeting abstracts 5: 78.

    Google Scholar 

  • Bonkhoff H & Remberger K (1996) Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model. Prostate 28: 98–106.

    Article  PubMed  CAS  Google Scholar 

  • Bonkhoff H, Stein U & Remberger K (1994) Multidirectional differentiation in the normal, hyperplastic, and neoplastic human prostate: simultaneous demonstration of cell-specific epithelial markers. Hum Pathol 25: 42–6.

    Article  PubMed  CAS  Google Scholar 

  • Bonkhoff H, Stein U & Remberger K (1994) The proliferative function of basal cells in the normal and hyperplastic human prostate. Prostate 24: 114–8.

    PubMed  CAS  Google Scholar 

  • Bonkhoff H (1996) Role of the basal cells in premalignant changes of the human prostate: a stem cell concept for the development of prostate cancer. Eur Urol 30: 201–5.

    PubMed  CAS  Google Scholar 

  • Collins AT, Habib FK, Maitland NJ & Neal DE (2001) Identification and isolation of human prostate epithelial stem cells based on alpha(2)beta(1)-integrin expression. J Cell Sci 114: 3865–72.

    PubMed  CAS  Google Scholar 

  • Cunha GR, Donjacour AA & Cooke PS et al. (1987) The endocrinology and developmental biology of the prostate. Endocr Rev 8: 338–62.

    Article  PubMed  CAS  Google Scholar 

  • Fong CJ, Sherwood ER & Sutkowski DM et al. (1991) Reconstituted basement membrane promotes morphological and functional differentiation of primary human prostatic epithelial cells. Prostate 19: 221–35.

    PubMed  CAS  Google Scholar 

  • Fry PM, Hudson DL, O'Hare MJ & Masters JR (2000) Comparison of marker protein expression in benign prostatic hyperplasia in vivo and in vitro. BJU Int 85: 504–13.

    Article  PubMed  CAS  Google Scholar 

  • Hudson DL, Guy AT, Fry PM, O'HareMJ, Watt FM & Masters JRW (2001) Epithelial differentiation pathways in the human prostate: identification of intermediate phenotypes by keratin expression. J.Histochem. Cytochem 49: 271–278.

    PubMed  CAS  Google Scholar 

  • Hudson DL, O'Hare MJ, Watt FM & Masters JRW (2000) Proliferative heterogeneity in the human prostate: evidence for epithelial stem cells. Lab Invest 80: 1243–1250.

    PubMed  CAS  Google Scholar 

  • Isaacs JT & Coffey DS (1989) Etiology and disease process of benign prostatic hyperplasia. Prostate Suppl 2: 33–50.

    Google Scholar 

  • Jones PH, Harper S & Watt FM (1995) Stem cell patterning and fate in human epidermis. Cell 80: 83–93.

    Article  PubMed  CAS  Google Scholar 

  • Jones PH & Watt FM (1993) Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 73: 713–24.

    Article  PubMed  CAS  Google Scholar 

  • Kleinman HK, McGarvey ML, Liotta LA, Robey PG, Tryggcason K & Martin GR (1982) Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochem 23: 6188–6193.

    Article  Google Scholar 

  • Lang SH, Stark M, Collins A, Paul AB, Stower MJ & Maitland NJ (2001) Experimental prostate epithelial morphogenesis in response to stroma and three-dimensional matrigel culture. Cell Growth Differ. 12: 631–640.

    PubMed  CAS  Google Scholar 

  • Lechner JF, Babcock MS, Marnell M, Narayan KS & Kaighn ME (1980) Normal human prostate epithelial cell cultures. Methods Cell Biol: 195–225.

  • Liu AY, True LD & LaTray L et al. (1999) Analysis and sorting of prostate cancer cell types by flow cytometry. Prostate 40: 192–9.

    Article  PubMed  Google Scholar 

  • Moll R, FrankeWW, Schiller DL, Geiger B & Krepler R (1982) The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31: 11–24.

    Article  PubMed  CAS  Google Scholar 

  • Nagle RB, Ahmann FR, McDaniel KM, Paquin ML, Clark VA & Celniker A (1987) Cytokeratin characterization of human prostatic carcinoma and its derived cell lines. Cancer Res 47: 281–286.

    PubMed  CAS  Google Scholar 

  • Peehl DM & Stamey TA (1986) Serum-free growth of adult human prostatic epithelial cells. In Vitro Cell Dev Biol 22: 82–90.

    PubMed  CAS  Google Scholar 

  • Peehl DM, Wong ST, Stamey TA (1988) Clonal growth characteristics of adult human prostatic epithelial cells. In Vitro Cell Dev Biol 24: 530–6.

    PubMed  CAS  Google Scholar 

  • Potten CS & Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110: 1001–20.

    PubMed  CAS  Google Scholar 

  • Purkis PE, Steel JB, Mackenzie IC, Nathrath WB, Leigh IM & Lane EB (1990) Antibody markers of basal cells in complex epithelia. J Cell Sci 97(Pt 1): 39–50.

    PubMed  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF & Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414: 105–111.

    Article  PubMed  CAS  Google Scholar 

  • Richardson GD, Robson CN, Neal DE & Collins AT (2002) AC133: a putative marker of prostate epithelial stem cells. Prostate Cancer and Prostatic Diseases: BPG Sept 2001 Meeting abstracts 5: 77.

    Google Scholar 

  • Robinson EJ, Neal DE & Collins AT (1998) Basal cells are progenitors of luminal cells in primary cultures of differentiating human prostatic epithelium. Prostate 37: 149–60.

    Article  PubMed  CAS  Google Scholar 

  • Rumpold H, Heinrich E & Untergasser G et al. (2002) Neuroendocrine differentiation of human prostatic primary epithelial cell in vitro. The Prostate 53: 101–108.

    Article  PubMed  CAS  Google Scholar 

  • Stasiak PC, Purkis PE, Leigh IM & Lane EB (1989) Keratin 19: predicted amino acid sequence and broad tissue distribution suggest it evolved from keratinocyte keratins. J Invest Dermatol 92: 707–16.

    Article  PubMed  CAS  Google Scholar 

  • van Leenders G, Dijkman H, Hulsbergen-van de Kaa C, Ruiter D & Schalken J (2000) Demonstration of intermediate cells during human prostate epithelial differentiation in situ and in vitro using triple-staining confocal scanning microscopy. Lab Invest 80: 1251–8.

    Article  PubMed  CAS  Google Scholar 

  • van Leenders GJ & Schalken JA (2001) Stem cell differentiation within the human prostate epithelium: implications for prostate carcinogenesis. BJU int 88: 35–42.

    Article  PubMed  Google Scholar 

  • Verhagen AP, Ramaekers FC, Aalders TW, Schaafsma HE, Debruyne FM & Schalken JA (1992) Colocalization of basal and luminal cell-type cytokeratins in human prostate cancer. Cancer Res 52: 6182–7.

    PubMed  CAS  Google Scholar 

  • Xue Y, Smedts F, Debruyne FMJ, de la Rosette JJ & Schalken JA (1998) Identification of intermediate cell types by keratin expression in the developing prostate. Prostate 34: 292–301.

    Article  PubMed  CAS  Google Scholar 

  • Xue Y, Verhofstad A & Lange W et al. (1997) Prostatic neuroendocrine cells have a unique keratin expression pattern and do not express Bcl-2: cell kinetic features of neuroendocrine cells in the human prostate. Am J Pathol 151: 1759–65.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Hudson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hudson, D.L. Prostate epithelial stem cell culture. Cytotechnology 41, 189–196 (2003). https://doi.org/10.1023/A:1024887009081

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024887009081

Navigation