Advertisement

Siberian Mathematical Journal

, Volume 44, Issue 4, pp 581–586 | Cite as

Conjugately Dense Subgroups of Locally Finite Chevalley Groups of Lie Rank 1

  • S. A. Zyubin
  • V. M. Levchuk
Article

Abstract

Of interest are the subgroups of various groups which have nonempty intersection with each class of conjugate elements of the group under study. We call these subgroups conjugately dense and study Neumann's problem of describing them in the Chevalley groups over a field. The main theorem lists all conjugately dense subgroups of the Chevalley groups of Lie rank 1 over a locally finite field.

Chevalley group locally finite field conjugately dense subgroup parabolic subgroup monomial subgroup 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zyubin S. A. and Levchuk V. M., “Conjugately dense subgroups of the group GL 2(K) over a locally finite field K,” in: Abstracts: The International Conference “Symmetry and Differential Equations,” IVM SO RAN, Krasnoyarsk, 1999, pp. 110–112.Google Scholar
  2. 2.
    Unsolved Problems in Group Theory. The Kourovka Notebook, No. 14, Inst. Mat. (Novosibirsk), Novosibirsk (1999).Google Scholar
  3. 3.
    Levchuk V. M., “A remark to Dikson's theorem,” Algebra i Logika, 22, No. 4, 421–434 (1983).Google Scholar
  4. 4.
    Nuzhin Ya. N., “On structure of Lie type groups of rank 1,” Mat. Zametki, 36, No. 2, 149–158 (1984).Google Scholar
  5. 5.
    Zyubin S. A., “Conjugately dense subgroups of the group PSL 2(K) over a locally finite field K,” in: Proceedings of the 34th Students Scientific Conference, Krasnoyarsk Univ., Krasnoyarsk, 2001, pp. 64–69.Google Scholar
  6. 6.
    Zyubin S. A., “Conjugately dense subgroups of the Suzuki group over a locally finite field,” in: Study on Mathematical Analysis and Algebra, Tomsk Univ., Tomsk, 2001, 3, pp. 102–105.Google Scholar
  7. 7.
    Zyubin S. A., “On conjugately dense subgroups of the Lie type groups of rank 1,” in: Abstracts: The International Symposium on Group Theory, Ural Univ.; IMM Ural Otdel. RAN, Ekaterinburg, 2001, pp. 83–84.Google Scholar
  8. 8.
    Dixon J. and Mortimer B., Permutation Groups, Springer-Verlag, New York (1991).Google Scholar
  9. 9.
    Carter R., Simple Groups of Lie Type, Wiley and Sons, New York (1972).Google Scholar
  10. 10.
    Steinberg R., Lectures on Chevalley Groups [Russian translation], Mir, Moscow (1975).Google Scholar
  11. 11.
    Ree R., “A family of simple groups associated with the simple Lie algebra of type (G 2),” Amer. J. Math., 83, No. 3, 432–462 (1961).Google Scholar
  12. 12.
    Levchuk V. M., “Automorphisms of unipotent subgroups of Lie type groups of small ranks,” Algebra i Logika, 29, No. 2, 141–161 (1990).Google Scholar
  13. 13.
    Levchuk V. M., “Parabolic subgroups of some ABA-groups,” Mat. Zametki, 31, No. 4, 509–525 (1982).Google Scholar
  14. 14.
    Levchuk V. M. and Nuzhin Ya. N., “On the structure of Ree groups,” Algebra i Logika, 24, No. 1, 26–41 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • S. A. Zyubin
    • 1
  • V. M. Levchuk
    • 2
  1. 1.Tomsk Polytechnical UniversityRussia
  2. 2.Krasnoyarsk State UniversityRussia

Personalised recommendations