Advertisement

Siberian Mathematical Journal

, Volume 44, Issue 4, pp 568–576 | Cite as

A Criterion for Admissibility of Inference Rules in Some Class of S4-Logics Without the Branching Property

  • E. M. Golovanova
Article

Abstract

We consider a finitely approximable modal S4-logic without the branching property. Although Rybakov's criterion is inapplicable, using his method we manage to obtain an algorithmic criterion for admissibility of inference rules in a given logic.

superintuitionistic logic modal logic admissible inference rule decidability with respect to admissibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maksimova L. L., “Strongly decidable properties of modal and intuitionistic calculi,” Log. J. IGPL, 8, No. 6, 797–819 (2000).Google Scholar
  2. 2.
    Maksimova L. L., “Intuitionistic logic and implicit definability,” Ann. Pure Appl. Logic, 105, No. 1-3, 83–102 (2000).Google Scholar
  3. 3.
    Rybakov V. V., Admissibility of Logical Inference Rules, Elsevier Sci. Publ.; North-Holland, New York; Amsterdam (1997). (Stud. Logic Found. Math., 136.)Google Scholar
  4. 4.
    Rybakov V. V., “A criterion for admissibility of rules in the modal system S4 and intuitionistic logic,” Algebra i Logika, 23, No. 5, 369–384 (1984).Google Scholar
  5. 5.
    Besgacheva U. V., “Admissible rules for the logic LinTGrz,” Bull. Sect. Logic, 26, No. 2, 60–67 (1997).Google Scholar
  6. 6.
    Babenyshev S. V., “Decidability of admissibility problems for modal logics S4.2 and S4.2Grz and superintuitionistic logic KC,” Algebra i Logika, 31, No. 4, 341–360 (1992).Google Scholar
  7. 7.
    Kiyatkin V. R., “Inference rules with metavariables and logical equations in the pretabular modal logic PM1,” Sibirsk. Mat. Zh., 41, No. 1, 88–97 (2000).Google Scholar
  8. 8.
    Dummett M. and Lemmon E., “Modal logics between S4 and S5,” Z. Math. Logik Grundlag. Math., 5, 260–264 (1959).Google Scholar
  9. 9.
    Maksimova L. L. and Rybakov V. V., “A lattice of normal modal logics,” Algebra i Logika, 13, No. 2, 105–122 (1974).Google Scholar
  10. 10.
    Chagrov A. and Zakharyaschev M., Modal Logic, Clarendon Press, Oxford (1997).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • E. M. Golovanova
    • 1
  1. 1.Krasnoyarsk State UniversityUSSR

Personalised recommendations