Advertisement

Siberian Mathematical Journal

, Volume 44, Issue 4, pp 680–685 | Cite as

Properties of the Fast Diffusion Equation and Its Multidimensional Exact Solutions

  • E. I. Semenov
Article

Abstract

We prove invariance of the fast diffusion equation in the two-dimensional coordinate space and give its reduction to a one-dimensional analog in the space variable. Using these results, we construct new exact multidimensional solutions which depend on arbitrary harmonic functions. As a consequence, we obtain new exact solutions to the well-known Liouville equation, the stationary analog of the fast diffusion equation with a linear source. We consider some generalizations to the case of systems of quasilinear parabolic equations.

fast diffusion exact multidimensional solution quasilinear parabolic equation Liouville equation conjugate harmonic function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pukhnachov V. V., “Multidimensional exact solutions of a nonlinear diffusion equation,” Prikl. Mekh. Tekhn. Fiz., 36, No. 2, 23–31 (1995).Google Scholar
  2. 2.
    Galaktionov V. A., Dorodnitsyn V. A., Elenin G. G., et al., “A quasilinear equation with a source: blow-up, localization, symmetry, exact solutions, asymptotics, and structures,” in: Contemporary Problems of Mathematics. Modern Achievements [in Russian] VINITI, Moscow, 1986, 28, pp. 95–205. (Itogi Nauki i Tekhniki.)Google Scholar
  3. 3.
    Dorodnitsyn V. A., Knyazeva I. V., and Svirshchevski? S. R., “Group properties of the heat equation with a source in two-dimensional and three-dimensional cases,” Differentsial'nye Uravneniya, 19, No. 7, 1215–1223 (1983).Google Scholar
  4. 4.
    Hurwitz A. and Courant R., The Theory of Functions [Russian translation], Nauka, Moscow (1968).Google Scholar
  5. 5.
    Rudykh G. A. and Semenov È. I., “Exact selfsimilar solutions of the equation u t = ? log u,” Mat. Zametki, 70, No. 5, 787–792 (2001).Google Scholar
  6. 6.
    Rudykh G. A. and Semenov È. I., “Existence and construction of anisotropic solutions to the multidimensional equation of nonlinear diffusion. II,” Sibirsk. Mat. Zh., 42, No. 1, 176–195 (2001).Google Scholar
  7. 7.
    Galaktionov V. A. and Posashkov S. A., “On new exact solutions to parabolic equations with quadratic nonlinearities,” Zh. Vychisl. Mat. i Mat. Fiz., 29, No. 4, 497–506 (1989).Google Scholar
  8. 8.
    Svirshchevski? S. R., “First and second order nonlinear differential operators with invariant linear spaces of maximal dimension,” Teoret. i Mat. Fiz., 105, No. 2, 198–207 (1995).Google Scholar
  9. 9.
    Semenov È. I., “On anisotropic solutions of a system of nonlinear parabolic equations,” Differentsial'nye Uravneniya, 38, No. 9, 1291–1292 (2002).Google Scholar
  10. 10.
    Babich V. M., Kapilevich M. B., Mikhlin S. G., et al., Linear Equations of Mathematical Physics [in Russian], Nauka, Moscow (1964).Google Scholar
  11. 11.
    Aristov S. N., “Periodic and localized exact solutions to the equation h t = ? log h,” Prikl. Mekh. Tekhn. Fiz., 40, No. 1, 22–26 (1999).Google Scholar
  12. 12.
    Kaptsov O. V., “Exact solutions of one diffusion equation,” in: Proceedings of the International Conference “Mathematical Models and the Methods of Their Study,” Krasnoyarsk, 2001, 1, pp. 289–291.Google Scholar
  13. 13.
    Svirshchevski? S. R., “Group classification and invariant solutions of nonlinear polyharmonic equations,” Differentsial'nye Uravneniya, 29, No. 10, 1772–1781 (1993).Google Scholar
  14. 14.
    Svirshchevski? S. R., Group Properties of Heat Models, Avtoref. Dis. Kand. Fiz.-Mat. Nauk, IPM im. M. V. Keldysha, Moscow (1984).Google Scholar
  15. 15.
    Sabitov I. Kh., “On solutions to the equation ?u = f(x, y)e cu in some special cases,” Mat. Sb., 196, No. 6, 89–104 (2001).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • E. I. Semenov
    • 1
  1. 1.Institute of System Dynamics and Control TheoryIrkutsk

Personalised recommendations