Siberian Mathematical Journal

, Volume 44, Issue 4, pp 638–644 | Cite as

On an Embedding Criterion for Interpolation Spaces and Application to Indefinite Spectral Problems

  • A. I. Parfyonov


An embedding criterion for interpolation spaces is formulated and applied to the study of the Riesz basis property in the L2,❘g❘ space of eigenfunctions of an indefinite Sturm–Liouville problem u″=λgu on the interval (-1,1) with the Dirichlet boundary conditions, provided that the function g(x) changes sign at the origin. In particular, the basis property criterion is established for an odd g(x). Some connections with stability in interpolation scales are discussed.

indefinite Sturm–Liouville problem interpolation space Riesz basis property 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pyatkov S. G., “Some properties of eigenfunctions of linear pencils,” Sibirsk. Mat. Zh., 30, No. 4, 111–124 (1989).Google Scholar
  2. 2.
    Pyatkov S. G., “Indefinite elliptic spectral problems,” Sibirsk. Mat. Zh., 39, No. 2, 409–426 (1998).Google Scholar
  3. 3.
    Zyablov A. A., “On basis properties of eigenfunctions of one model problem with an indefinite weight,” Mat. Zametki, 54, No. 4, 149–151 (1993).Google Scholar
  4. 4.
    Fleige A., “The 'turning point condition' of Beals for indefinite Sturm-Liouville problems,” Math. Nachr., 172, 109–112 (1995).Google Scholar
  5. 5.
    Curgus B. and Najman B., “The operator \(\frac{{d^2 }}{{dx^2 }}\) is similar to a selfadjoint operator in L 2(ℝ),” Proc. Amer. Math. Soc., 123, No. 4, 1125–1128 (1995).Google Scholar
  6. 6.
    Faierman M. and Langer H., “Elliptic problems involving an indefinite weight function,” in: Oper. Theory: Adv. Appl., Birkhäuser, Basel, 1996, 87, pp. 105–127.Google Scholar
  7. 7.
    Abasheeva N. L. and Pyatkov S. G., “Counterexamples in indefinite Sturm-Liouville problems,” Siberian Adv. Math., 7, No. 4, 1–8 (1997).Google Scholar
  8. 8.
    Fleige A. and Najman B., “Nonsingularity of critical points of some differential and difference operators,” in: Oper. Theory: Adv. Appl., Birkhäuser, Basel, 1998, 102, pp. 85–95.Google Scholar
  9. 9.
    Fleige A., “A counterexample to completeness properties for indefinite Sturm-Liouville problems,” Math. Nachr., 190, 123–128 (1998).Google Scholar
  10. 10.
    Abasheeva N. L., “Counterexamples in elliptic spectral problems with an indefinite weight function,” in: Abstracts: Nonclassical Equations of Mathematical Physics, The Third Siberian Congress on Applied Mathematics (INPRIM-98) Dedicated to the Memory of S. L. Sobolev (Novosibirsk, 22-27 June 1998), Sobolev Inst. Mat., Novosibirsk, 1998, pp. 113–121.Google Scholar
  11. 11.
    Pyatkov S. G., “Interpolation of some function spaces and indefinite Sturm-Liouville problems,” in: Oper. Theory: Adv. Appl., Birkhäuser, Basel, 1998, 102, pp. 179–200.Google Scholar
  12. 12.
    Fleige A., “Non-semibounded sesquilinear forms and left-indefinite Sturm-Liouville problems,” Integral Equations Operator Theory, 33, No. 1, 20–33 (1999).Google Scholar
  13. 13.
    Pyatkov S. G., “Interpolation of weighted Sobolev spaces,” Mat. Trudy, 4, No. 1, 122–173 (2001).Google Scholar
  14. 14.
    Triebel H., Interpolation Theory; Function Spaces; Differential Operators [Russian translation], Mir, Moscow (1980).Google Scholar
  15. 15.
    Grisvard P., “An approach to the singular solutions of elliptic problems via the theory of differential equations in Banach spaces,” in: Differential Equations in Banach Spaces: Proc. Conf., Bologna (Italy), 1985, Springer-Verlag, Berlin etc., 1986, pp. 137–155. (Lecture Notes Math.; 1223).Google Scholar
  16. 16.
    Ivanov S. and Kalton N., “Interpolation of subspaces and applications to exponential bases,” Algebra i Analiz, 13, No. 2, 93–115 (2001).Google Scholar
  17. 17.
    Kalton N. and Mitrea M., “Stability results on interpolation scales of quasi-Banach spaces and applications,” Trans. Amer. Math. Soc., 350, No. 10, 3903–3922 (1998).Google Scholar
  18. 18.
    Volkmer H., “Sturm-Liouville problems with indefinite weights and Everitt's inequality,” Proc. Roy. Soc. Edinburgh Sect. A, 126, No. 5, 1097–1112 (1996).Google Scholar
  19. 19.
    Pyatkov S. G., “On some properties of eigenfunctions of linear pencils,” Mat. Zametki, 51, No. 1, 141–148 (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • A. I. Parfyonov
    • 1
  1. 1.Sobolev Institute of MathematicsNovosibirsk

Personalised recommendations