Skip to main content
Log in

Identification of ribosomal protein S3a as a candidate for a novel PI 3-kinase target in the nucleus

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Phosphatidylinositol 3,4,5-trisphosphate (PIP3) is an important lipid second messenger that mediates various cell responses. We have searched for the nuclear PIP3 binding proteins using PIP3 analogue beads. A 33 kD protein was detected in this method, which was identified as ribosomal protein S3a by the mass spectrometric analysis. The recombinant S3a protein bound specifically to PIP3. S3a localized not only in the cytosol but also in the nucleus. Interestingly, not cytosolic but nuclear S3a bound to PIP3, suggesting different roles of S3a in the cytosol and the nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bavelloni A, Santi S, Sirri A, Riccio M, Faenza I, Zini N, Cecchi S, Ferri A, Auron P, Maraldi NM and Marmiroli S (1999) Phosphatidylinositol 3-kinase translocation to the nucleus is induced by interleukin 1 and prevented by mutation of interleukin 1 receptor in human osteosarcoma Saos-2 cells. J Cell Sci 112: 631-640.

    PubMed  Google Scholar 

  • Bertagnolo V, Marchisio M, Volinia S, Caramelli E and Capitani S (1998) Nuclear association of tyrosine-phosphorylated Vav to phospholipase C-gamma1 and phosphoinositide 3-kinase during granulocytic differentiation of HL-60 cells. FEBS Lett 441: 480-484.

    Article  PubMed  Google Scholar 

  • Bertagnolo V, Neri LM, Marchisio M, Mischiati C and Capitani S (1999) Phosphoinositide 3-kinase activity is essential for alltransretinoic acid-induced granulocytic differentiation of HL-60 cells. Cancer Res 59: 542-546.

    PubMed  Google Scholar 

  • Borgatti P, Martelli AM, Bellacosa A, Casto R, Massari L, Capitani S and Neri LM (2000) Translocation of Akt/PKB to the nucleus of osteoblast-like MC3T3-E1 cells exposed to proliferative growth factors. FEBS Lett 477: 27-32.

    Article  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254.

    Article  PubMed  Google Scholar 

  • Cocco L, Gilmour RS, Ognibene A, Letcher AJ, Manzoli FA and Irvine RF (1987) Synthesis of polyphosphoinositides in nuclei of Friend cells. Evidence for polyphosphoinositide metabolism inside the nucleus which changes with cell differentiation. Biochem J 248: 765-770.

    PubMed  Google Scholar 

  • Cocco L, Martelli AM, Barnabei O and Manzoli FA (2001) Nuclear inositol lipid signaling. Adv Enzyme Regul 41: 361-384.

    PubMed  Google Scholar 

  • Cui K, Coutts M, Stahl J and Sytkowski AJ (2000) Novel interaction between the transcription factor CHOP (GADD153) and the ribosomal protein FTE/S3a modulates erythropoiesis. J Biol Chem 275: 7591-7596.

    Article  PubMed  Google Scholar 

  • Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y and Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91: 231-241.

    Article  PubMed  Google Scholar 

  • Divecha N, Clarke JH, Roefs M, Halstead JR and D'santos C (2000) Nuclear inositides: Inconsistent consistencies. Cell Mol Life Sci 57: 379-393.

    PubMed  Google Scholar 

  • D'santos CS, Clarke JH and Divecha N (1998) Phospholipid signalling in the nucleus. Een DAG uit het leven van de inositide signalering in de nucleus. Biochim Biophys Acta 1436: 201-232.

    PubMed  Google Scholar 

  • Eves EM, Xiong W, Bellacosa A, Kennedy SG, Tsichlis PN, Rosner MR and Hay N (1998) Akt, a target of phosphatidylinositol 3-kinase, inhibits apoptosis in a differentiating neuronal cell line. Molec Cell Biol 18: 2143-2152.

    PubMed  Google Scholar 

  • Fukui Y, Ihara S and Nagata S (1998) Downstream of phosphatidylinositol-3 kinase, a multifunctional signaling molecule, and its regulation in cell responses. J Biochem 124: 1-7.

    PubMed  Google Scholar 

  • Iwamatsu A and Yoshida-Kubomura N (1996) Systematic peptide fragmentation of polyvinylidene difluoride (PVDF)-immobilized proteins prior to microsequencing. J Biochem 120: 29–34.

    PubMed  CAS  Google Scholar 

  • Kho CJ, Wang Y and Zarbl H (1996) Effect of decreased fte-1 gene expression on protein synthesis, cell growth, and transformation. Cell Growth Diff 7: 1157-1166.

    PubMed  Google Scholar 

  • Kho CJ and Zarbl H (1992) Fte-1, a v-fos transformation effector gene, encodes the mammalian homologue of a yeast gene involved in protein import into mitochondria. Proc Natl Acad Sci USA 89: 2200-2204.

    Article  PubMed  Google Scholar 

  • Lu PJ, Hsu AL, Wang DS, Yan HY, Yin HL and Chen CS (1998) Phosphoinositide 3-kinase in rat liver nuclei. Biochemistry 37: 5738-5745.

    PubMed  Google Scholar 

  • Lutsch G, Stahl J, Kargel HJ, Noll F and Bielka H (1990) Immunoelectron microscopic studies on the location of ribosomal proteins on the surface of the 40S ribosomal subunit from rat liver. Eur J Cell Biol 51: 140-150.

    PubMed  Google Scholar 

  • Martelli AM, Bortul R, Tabellini G, Aluigi M, Peruzzi D, Bareggi R, Narducci P and Cocco L (2001) Re-examination of the mechanisms regulating nuclear inositol lipid metabolism. FEBS Lett 505: 1-6.

    Article  PubMed  Google Scholar 

  • Mizushima S and Nagata S (1990) pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res 18: 5322.

    PubMed  CAS  Google Scholar 

  • Nagahisa H, Nagata Y, Ohnuki T, Osada M, Nagasawa T, Abe T and Todokoro K (1996) Bone marrow stromal cells produce thrombopoietin and stimulate megakaryocyte growth and maturation but suppress proplatelet formation. Blood 87: 1309-1316.

    PubMed  Google Scholar 

  • Naora H, Takai I, Adachi M and Naora H (1998) Altered cellular responses by varying expression of a ribosomal protein gene: Sequential coordination of enhancement and suppression of ribosomal protein S3a gene expression induces apoptosis. J Cell Biol 141: 741-753.

    Article  PubMed  Google Scholar 

  • Neri LM, Capitani S, Borgatti P and Martelli AM (1999) Lipid signaling and cell responses at the nuclear level. Histol Histopathol 14: 321-335.

    PubMed  Google Scholar 

  • Neri LM, Martelli AM, Borgatti P, Colamussi ML, Marchisio M and Capitani S (1999) Increase in nuclear phosphatidylinositol 3-kinase activity and phosphatidylinositol (3,4,5) trisphosphate synthesis precede PKC-zeta translocation to the nucleus of NGFtreated PC12 cells. Faseb J 13: 2299-2310.

    PubMed  Google Scholar 

  • Neri LM, Milani D, Bertolaso L, Stroscio M, Bertagnolo V and Capitani S (1994) Nuclear translocation of phosphatidylinositol 3-kinase in rat pheochromocytoma PC 12 cells after treatment with nerve growth factor. Cell Mol Biol (Noisy-le-grand) 40: 619-626.

    PubMed  Google Scholar 

  • Nygard O, Nilsson L and Westermann P (1987) Characterisation of the ribosomal binding site for eukaryotic elongation factor 2 by chemical cross-linking. Biochim Biophys Acta 910: 245-253.

    PubMed  Google Scholar 

  • Nygard O, Westermann P and Hultin T (1981) Identification of neighbouring components in the quaternary eukaryotic protein synthesis initiation complex, eIF-2.GTP.Met-tRNAf.small ribosomal subunit. Acta Chem Scand B 35: 57-59.

    PubMed  Google Scholar 

  • Russell L, Naora H and Naora H (2000) Down-regulated RPS3a/nbl expression during retinoid-induced differentiation of HL-60 cells: A close association with diminished susceptibility to actinomycin D-stimulated apoptosis. Cell Struct Funct 25: 103-113.

    Article  PubMed  Google Scholar 

  • Shirai T, Tanaka K, Terada Y, Sawasa T, Shirai R, Hashimoto Y, Nagata S, Iwamatsu A, Okawa K, Li S, Hattori S, Mano H and Fukui Y (1998) Specific detection of Phosphatidylinositol 3,4,5-trisphosphate binding proteins by the PIP3 analogue beads: An application for rapid purification of the PIP3 binding proteins. Biochim Biophys Acta 1402: 292-302.

    PubMed  Google Scholar 

  • Song D, Sakamoto S and Taniguchi T (2002) Inhibition of poly(ADP-ribose) polymerase activity by Bcl-2 in association with the ribosomal protein S3a. Biochemistry 41: 929-934.

    PubMed  Google Scholar 

  • Stahl J and Kobets ND (1981) Affinity labeling of proteins at the mRNA binding site of rat liver ribosomes by an analogue of octauridylate containing an alkylating group attached to the 3′-end. FEBS Lett 123: 269-272.

    Article  PubMed  Google Scholar 

  • Svobada AJ and McConkey EH (1978) Crosslinking of proteins to ribosomal RNA in HeLa cell polysomes by sodium periodate. Biochem Biophys Res Commun 81: 1145-1152.

    PubMed  Google Scholar 

  • Tanaka K, K Horiguchi K, Yoshida T, Takeda M, Fujisawa H, Takeuchi K, Umeda M, Kato S, Ihara S, Nagata S and Fukui Y (1999) Evidence that a phosphatidylinositol 3,4,5-trisphosphate binding protein can function in nucleus. J Biol Chem 274: 3919-3922.

    PubMed  Google Scholar 

  • Toker A and Cantley LC (1997) Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 387: 673-676.

    Article  PubMed  Google Scholar 

  • Tolan DR and Traut RR (1981) Protein topography of the 40 S ribosomal subunit from rabbit reticulocytes shown by crosslinking with 2-iminothiolane. J Biol Chem 256: 10129-10136.

    PubMed  Google Scholar 

  • Vavhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, Woscholski R, Parker PJ and Waterfield MD (2001) Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 70: 535-602.

    Google Scholar 

  • Westermann P, Heumann W, Bommer UA, Bielka H, Nygard O and Hultin T (1979) Crosslinking of initiation factor eIF-2 to proteins of the small subunit of rat liver ribosomes. FEBS Lett 97: 101-104.

    Article  PubMed  Google Scholar 

  • Westermann P and Nygard O (1983) The spatial arrangement of the complex between eukaryotic initiation factor eIF-3 and 40 S ribosomal subunit. Cross-linking between factor and ribosomal proteins. Biochim Biophys Acta 741: 103-108.

    PubMed  Google Scholar 

  • Westermann P, Nygard O and Bielka H (1981) Cross-linking of Met-tRNAf to eIF-2 beta and to the ribosomal proteins S3a and S6 within the eukaryotic inhibition complex, eIF-2. GMPPCP.Met-tRNAf.small ribosomal subunit. Nucleic Acids Res 9: 2387-2396.

    PubMed  Google Scholar 

  • Yokogawa T, Nagata S, Nishio Y, Tsutsumi T, Ihara S, Shirai R, Morita K, Umeda M, Shirai Y, Saitoh N and Fukui Y (2000) Evidence that 3_-phosphorylated polyphosphoinositides are generated at the nuclear surface: Use of immunostaining technique with monoclonal antibodies specific for PI 3,4–P(2). FEBS Lett 473: 222-226.

    Article  PubMed  Google Scholar 

  • Zhou H, Li XM, Meinkoth J and Pittman RN (2000) Akt regulates cell survival and apoptosis at a postmitochondrial level [In Process Citation]. J Cell Biol 151: 483-494.

    Article  PubMed  Google Scholar 

  • Zini N, Ognibene A, Bavelloni A, Santi S, Sabatelli P, Baldini N, Scotlandi K, Serra M and Maraldi NM (1996) Cytoplasmic and nuclear localization sites of phosphatidylinositol 3-kinase in human osteosarcoma sensitive and multidrug-resistant Saos-2 cells. Histochem Cell Biol 106: 457-464.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhisa Fukui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamaguchi, N., Ohdaira, T., Shinohara, A. et al. Identification of ribosomal protein S3a as a candidate for a novel PI 3-kinase target in the nucleus. Cytotechnology 40, 85–92 (2002). https://doi.org/10.1023/A:1023970222898

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023970222898

Navigation