Skip to main content
Log in

What Can the Quantum Liquid Say on the Brane Black Hole, the Entropy of an Extremal Black Hole, and the Vacuum Energy?

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Using quantum liquids one can simulate the behavior of the quantum vacuum in the presence of the event horizon. The condensed matter analogs demonstrate that in most cases the quantum vacuum resists formation of the horizon, and even if the horizon is formed different types of the vacuum instability develop, which are faster than the process of Hawking radiation. Nevertheless, it is possible to create the horizon on the quantum-liquid analog of the brane, where the vacuum life-time is long enough to consider the horizon as the quasistationary object. Using this analogy we calculate the Bekenstein entropy of the near-extremal and extremal black holes, which comes from the fermionic microstates in the region of the horizon—the fermion zero modes. We also discuss how the cancellation of the large cosmological constant follows from the thermodynamics of the vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. S. V. Babak and L. P. Grishchuk, “Finite-range gravity and its role in gravitational waves, black holes and cosmology”, gr-gc/0209006.

  2. B. Holdom, “On the fate of singularities and horizons in higher derivative gravity”, hep-th/ 0206219.

  3. J. Magueijo, Phys. Rev. D 63, 043502(2001).

    Google Scholar 

  4. W. G. Unruh, Phys. Rev. Lett. 46, 1351(1981)

    Google Scholar 

  5. G. E. Volovik, Phys. Rep. 351, 195(2001).

    Google Scholar 

  6. Sakagami Masa-aki and A. Ohashi, Progr. Theor. Phys. 107, 1267(2002).

    Google Scholar 

  7. G. E. Volovik, Universe in a Helium Droplet (Clarendon Press, Oxford, 2003).

    Google Scholar 

  8. A. D. Sakharov, Sov. Phys. Dokl. 12, 1040(1968).

    Google Scholar 

  9. M. Novello, M. Visser, and G. E. Volovik (Eds.), Artificial Black Holes (World Scientific, Singapore, 2002).

    Google Scholar 

  10. S. W. Hawking, Nature 248, 30(1974).

    Google Scholar 

  11. J. D. Bekenstein, Phys. Rev. D 7, 2333(1973).

    Google Scholar 

  12. P. Painleve, C. R. Acad. Sci. (Paris) 173, 677(1921)

    Google Scholar 

  13. G. Chapline, E. Hohlfeld, R. B. Laughlin, and D. I. Santiago, Phil. Mag. B 81, 235(2001).

    Google Scholar 

  14. G. W. Gibbons and R. E. Kallosh, Phys. Rev. D 51, 2839(1995).

    Google Scholar 

  15. S. W. Hawking, G. T. Horowitz, and S. F. Ross, Phys. Rev. D 51, 4302(1995).

    Google Scholar 

  16. Don N. Page, “Thermodynamics of near-extreme black holes”, hepth/0012020.

  17. M. Visser, Class. Quantum Grav. 15, 1767(1998).

    Google Scholar 

  18. K. Martel and E. Poisson, Am. J. Phys. 69, 476(2001).

    Google Scholar 

  19. M. K. Parikh and F. Wilczek, Phys. Rev. Lett. 85, 5042(2000).

    Google Scholar 

  20. C. Doran, Phys. Rev. D 61, 067503(2000).

    Google Scholar 

  21. R. Blaauwgeers, V. B. Eltsov, G. Eska, A. P. Finne, R. P. Haley, M. Krusius, J. J. Ruohio, L. Skrbek, and G. E. Volovik, Phys. Rev. Lett. 89, 155301(2002).

    Google Scholar 

  22. G. E. Volovik, JETP Lett. 76, 240(2002).

    Google Scholar 

  23. R. Schützhold and W. G. Unruh, Phys. Rev. D 66, 044019(2002).

    Google Scholar 

  24. S. Corley and T. Jacobson, Phys. Rev. D 59, 124011(1999).

    Google Scholar 

  25. T. Padmanabhan, “Cosmological constant—the weight of the vacuum”, hep-th/0212290.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volovik, G.E. What Can the Quantum Liquid Say on the Brane Black Hole, the Entropy of an Extremal Black Hole, and the Vacuum Energy?. Foundations of Physics 33, 349–368 (2003). https://doi.org/10.1023/A:1023762013553

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023762013553

Navigation