Advertisement

Foundations of Physics

, Volume 33, Issue 2, pp 297–321 | Cite as

Unbounded Entropy in Spacetimes with Positive Cosmological Constant

  • Raphael Bousso
  • Oliver DeWolfe
  • Robert C. Myers
Article

Abstract

In theories of gravity with a positive cosmological constant, we consider product solutions with flux, of the form (A)dS p ×S q . Most solutions are shown to be perturbatively unstable, including all uncharged dS p ×S q spacetimes. For dimensions greater than four, the stable class includes universes whose entropy exceeds that of de Sitter space, in violation of the conjectured “N-bound.” Hence, if quantum gravity theories with finite-dimensional Hilbert space exist, the specification of a positive cosmological constant will not suffice to characterize the class of spacetimes they describe.

Keywords

Entropy Hilbert Space Cosmological Constant Quantum Gravity Gravity Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. G. Riess et al., Astron. J. 116, 1009(1998), astro-ph/9805201.Google Scholar
  2. 2.
    S. Perlmutter et al., Astrophys. J. 517, 565(1999), astro-ph/9812133.Google Scholar
  3. 3.
    E. Silversteiy, “(A)dS Backgrounds from asymmetric orientifolds,” hep-th/0106209 (2001).Google Scholar
  4. 4.
    C. M. Hull, JHEP 11, 012(2001), hep-th/0109213.Google Scholar
  5. 5.
    M. Gutperle and A. Strominger, JHEP 04, 018(2002), hep-th/0202210.Google Scholar
  6. 6.
    A. Strominger, JHEP 10, 034(2001), hep-th/0106113.Google Scholar
  7. 7.
    E. Witten, “Quantum gravity in de Sitter space”, hep-th/0106109 (2001).Google Scholar
  8. 8.
    V. Balasubramanian, J. de Boer, and D. Minic, “Mass, entropy, and holography in asymptotically de Sitter spaces”, hep-th/0110108 (2001).Google Scholar
  9. 9.
    M. Spradlin and A. Volovich, “Vacuum states and the S-matrix in dS/CFT”, hep-th/ 0112223 (2001).Google Scholar
  10. 10.
    J. Polchinski, Phys. Rev. Lett. 75, 4724(1995), hep-th/9510017.Google Scholar
  11. 11.
    G. 't Hooft, “Dimensional reduction in quantum gravity”, gr-qc/9310026.Google Scholar
  12. 12.
    L. Susskind, J. Math. Phys. 36, 6377(1995), hep-th/9409089.Google Scholar
  13. 13.
    R. Bousso, JHEP 07, 004(1999), hep-th/9905177.Google Scholar
  14. 14.
    R. Bousso, JHEP 06, 028(1999), hep-th/9906022.Google Scholar
  15. 15.
    W. Fischlen, unpublished.Google Scholar
  16. 16.
    W. Fischler, “Taking de Sitter seriously”, Talk given at Role of Scaling Laws in Physics and Biology (Celebrating the 60th Birthday of Geoffrey West), Santa Fe, December 2000.Google Scholar
  17. 17.
    T. Banks, “Cosmological breaking of super symmetry or little Lambda goes back to the future II”, hep-th/0007146 (2008).Google Scholar
  18. 18.
    G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2738(1977).Google Scholar
  19. 19.
    R. Bousso, JHEP 11, 038(2000), hep-th/0010252.Google Scholar
  20. 20.
    R. Bousso, “The holographic principle”, hep-th/0203101 (2002).Google Scholar
  21. 21.
    R. Bousso, JHEP 04, 035(2001), hep-th/0012052.Google Scholar
  22. 22.
    J. D. Bekenstein, Nuovo Cim. Lett. 4, 737(1972).Google Scholar
  23. 23.
    J. D. Bekenstein, Phys. Rev. D 7, 2333(1973).Google Scholar
  24. 24.
    J. D. Bekenstein, Phys. Rev. D 9, 3292(1974).Google Scholar
  25. 25.
    J. D. Bekenstein, Phys. Rev. D 23, 287(1981).Google Scholar
  26. 26.
    M. Schiffer and J. D. Bekenstein, Phys. Rev. D 39, 1109(1989).Google Scholar
  27. 27.
    S. Hellerman, N. Kaloper, and L. Susskind, JHEP 06, 003(2001), hep-th/0104180.Google Scholar
  28. 28.
    W. Fischler, A. Kashani-Poor, R. McNees, and S. Paban, JHEP 07, 003(2001), hep-th/ 0104181.Google Scholar
  29. 29.
    L. Susskind, L. Thorlacius, and J. Uglum, Phys. Rev. D 48, 3743(1993), hep-th/9306069.Google Scholar
  30. 30.
    A. Strominger and C. Vafa, Phys. Lett. B 379, 99(1996), hep-th/9601029.Google Scholar
  31. 31.
    R. Bousso and S. W. Hawking, Phys. Rev. D 59, 103501(1999), hep-th/9807148.Google Scholar
  32. 32.
    P. Ginsparg and M. J. Perry, Nucl. Phys. B222, 245(1983).Google Scholar
  33. 33.
    L. Dyson, J. Lindesay, and L. Susskind, “Is there really a de Sitter/CFT duality,” hep-th/0202163 (2002).Google Scholar
  34. 34.
    P. G. O. Freund and M. A. Rubin, Phys. Lett. 97B, 233(1980).Google Scholar
  35. 35.
    O. DeWolfe, D. Z. Freedman, S. S. Gubser, G. T. Horowitz, and I. Mitra, Phys. Rev. D 65, 064033(2002), hep-th/0105047.Google Scholar
  36. 36.
    L. Castellani, R. D'Auria, P. Fre, K. Pilch, and P. van Nieuwenhuizen, Class. Quant. Grav. 1, 339(1984).Google Scholar
  37. 37.
    H. J. Kirn, L. J. Romans, and P. van Nieuwenhuizen, Phys. Rev. D 32, 389(1985).Google Scholar
  38. 38.
    P. van Nieuwenhuizen, Class. Quant. Grav. 2, 1(1985).Google Scholar
  39. 39.
    M. J. Duff, B. E. W. Nilsson, and C. N. Pope, Phys. Rep. 130, 1(1986).Google Scholar
  40. 40.
    P. Breitenlohner and D. Z. Freedman, Phys. Lett. B 115, 197(1982).Google Scholar
  41. 41.
    G. W. Gibbons, C. M. Hull, and N. P. Warner, Nucl. Phys. B 218, 173(1983).Google Scholar
  42. 42.
    C. M. Hull, Commun. Math. Phys. 90, 545(1983).Google Scholar
  43. 43.
    W. Boucher, Nucl. Phys. B 242, 282(1984).Google Scholar
  44. 44.
    S. S. Gubser, Adv. Theor. Math. Phys. 4, 679(2002), hep-th/0002160.Google Scholar
  45. 45.
    R. Raczka, N. Limic, and J. Niederle, J. Math. Phys. 7, 1861(1966).Google Scholar
  46. 46.
    N. Limic, J. Niederle, and R. Raczka, J. Math. Phys. 8, 1079(1967).Google Scholar
  47. 47.
    L. F. Abbott and S. Deser, Nucl. Phys. B 195, 76(1982).Google Scholar
  48. 48.
    R. Bousso and S. W. Hawking, Phys. Rev. D 57, 2436(1998), hep-th/9709224.Google Scholar
  49. 49.
    V. E. Hubeny and M. Rangamanij, “Unstable horizons”, hep-th/0202189 (2002).Google Scholar
  50. 50.
    J. de Boey, “Point particles in AdSs and all that”, Talk given at Avatars of M-theory, Santa Barbara, June 2001, http://online.itp.ucsb.edu/online/mtheory_c01/boer/.Google Scholar
  51. 51.
    G. T. Horowitz and K. Maeda, Phys. Rev. Lett. 87, 131301(2001), hep-th/0105111.Google Scholar
  52. 52.
    J. M. Maldacena, J. Michelson, and A. Strominger, JHEP 02, 011(1999), hep-th/ 9812073.Google Scholar
  53. 53.
    R. B. Mann and S. F. Ross, Phys. Rev. D 52, 2254(1995), gr-qc/9504015.Google Scholar
  54. 54.
    R. Bousso and S. W. Hawking, Phys. Rev. D 54, 6312(1996), gr-qc/9606052.Google Scholar
  55. 55.
    R. Bousso, Phys. Rev. D 58, 083511(1998), hep-th/9805081.Google Scholar
  56. 56.
    R. Bousso, Phys. Rev. D 60, 063503(1999), hep-th/9902183.Google Scholar
  57. 57.
    J. C. Niemeyer and R. Bousso, Phys. Rev. D 62, 023503(2000), gr-qc/0004004.Google Scholar
  58. 58.
    J. D. Brown and C. Teitelboim, Phys. Lett. B 195, 177(1987).Google Scholar
  59. 59.
    J. D. Brown and C. Teitelboim, Nucl. Phys. B 297, 787(1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Raphael Bousso
    • 1
  • Oliver DeWolfe
    • 1
  • Robert C. Myers
    • 2
    • 3
    • 4
  1. 1.Institute for Theoretical PhysicsUCSBSanta Barbara
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  3. 3.Department of PhysicsUniversity of WaterlooWaterlooCanada
  4. 4.Department of PhysicsMcGill UniversityMontrealCanada

Personalised recommendations