Skip to main content
Log in

Toxicity Patterns of Cytotoxic Drugs

  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Abstract

Toxicity is a major concern for anticancer drugs. These compounds present a narrow therapeutic index, with a small difference between the dose required for an antitumor effect and that responsible for unacceptable toxicity. Their recommended doses are determined according to the toxicity endpoint. Moreover, toxicity is observed earlier than the therapeutic effect, so, toxic effects represent a major endpoint for pharmacodynamic studies of cytotoxic drugs. Knowledge of toxicity patterns and main factors of toxicity of anticancer drugs is required before modeling data of these studies. Hematological toxicities represent the main toxicity of the cytotoxic. However, non-hematological toxicities have become more important than hematological toxicities as pharmacodynamic endpoints in some circumstances such as high-dose chemotherapy associated with bone marrow transplantation. This paper will describe the main toxicity of the cytotoxic drugs, and its factors of both inter- and intra-patient variability. The toxicity pattern of topotecan will be examined as an example. Knowledge of the toxicity pattern of a drug constitutes a prerequirement before modeling its pharmacodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hryniuk WM: Is more better? J Clin Oncol 4: 621–622, 1986.

    Google Scholar 

  2. Alberts DS, Dorr RT: New perspectives on an old friend: optimizing carboplatin for the treatment of solid tumors. Oncologist 3: 15–34, 1998

    Google Scholar 

  3. Gonzales-Vitale JC, Hayes DM, Cvitkovic E, Sternberg SS: The renal pathology in clinical trials of cis-platinum (II) diamminedichloride. Cancer 39: 1362–1371, 1977

    Google Scholar 

  4. Robert J: Clinical pharmacokinetics of epirubicin. Clin Pharmacokinet 26: 428–438, 1994

    Google Scholar 

  5. Schneider DT, Hilgenfeld E, Schwabe D, Behnisch W, Zoubek A, Wessalowski R, Gobel U: Acute myelogenous leukemia after treatment for malignant germ cell tumors in children. J Clin Oncol 17: 3226–3233, 1999

    Google Scholar 

  6. Macdonald JS: Toxicity of 5–fluorouracil. Oncology (Huntingt) 13: 33–34, 1999

    Google Scholar 

  7. Ratain MJ, Schilsky RL, Conley BA, Egorin MJ: Pharmacodynamics in cancer therapy. J Clin Oncol 8: 1739–1753, 1990

    Google Scholar 

  8. Drach D, Zhao S, Drach J, Mahadevia R, Gattringer C, Huber H, Andreeff M: Subpopulations of normal peripheral blood and bone marrow cells express a functional multidrug resistant phenotype. Blood 80: 2729–2734, 1992

    Google Scholar 

  9. Baum C, Peinert S, Carpinteiro A, Eckert HG, Fairbairn LJ: Genetic modification of haematopoietic cells for combined resistance to podophyllotoxins, other agents covered by MDR1–mediated efflux activity and nitrosoureas. Bone Marrow Transplant 25(suppl 2): S71–S74, 2000

    Google Scholar 

  10. Otsuki T, Sakaguchi H, Yamada O, Yawata Y, Ueki A: Effect of the nitrosourea anti-tumor chemotherapeutical agent MCNU on five human myeloma cell lines. Oncol Rep 5: 827–832, 1998

    Google Scholar 

  11. Schein PS, Bull JM, Doukas D, Hoth D: Sensitivity of human and murine hematopoietic precursor cells to 2–[3–(2–chloroethyl)-3–nitrosoureido]-D-glucopyranose and 1,3–bis(2–chloroethyl)-1–nitrosourea. Cancer Res 38: 257–260, 1978

    Google Scholar 

  12. Goldwasser F, Buthaud X, Gross M, Bleuzen P, Cvitkovic E, Voinea A, Jasmin C, Romain D, Misset JL: Decreased topotecan platelet toxicity with successive topotecan treatment cycles in advanced ovarian cancer patients. Anticancer Drugs 10: 263–265, 1999

    Google Scholar 

  13. Verwey J, de Vries J, Pinedo HM: Mitomycin C-induced renal toxicity, a dose-dependent side effect? Eur J Cancer Clin Oncol 23: 195–199, 1987

    Google Scholar 

  14. Pivot X, Guardiola E, Etienne M, Thyss A, Foa C, Otto J, Schneider M, Magne N, Bensadoun RJ, Renee N, Milano G: An analysis of potential factors allowing an individual prediction of cisplatin-induced anaemia. Eur J Cancer 36: 852–857, 2000

    Google Scholar 

  15. Pujol JL, Douillard JY, Riviere A, Quoix E, Lagrange JL, Berthaud P, Bardonnet-Comte M, Polin V, Gautier V, Milleron B, Chomy F, Chomy P, Spaeth D, Le Chevalier T: Dose-intensity of a four-drug chemotherapy regimen with or without recombinant human granulocyte-macrophage colony-stimulating factor in extensive-stage small-cell lung cancer: a multicenter randomized phase III study. J Clin Oncol 15: 2082–2089, 1997

    Google Scholar 

  16. Tjan-Heijnen VC, Postmus PE, Wagener DJ: Dose intensification of chemotherapy and the role of granulocyte colony stimulating factor and granulocyte macrophage colony stimulating factor in small cell lung cancer. Anticancer Drugs 8: 549–564, 1997

    Google Scholar 

  17. Newell DR: Pharmacokinetic determinants of the activity and toxicity of antitumour agents. Cancer Surv 8: 557–603, 1989

    Google Scholar 

  18. Egorin MJ, Reyno LM, Canetta RM, Jodrell DI, Swenerton KD, Pater JL, Burroughs JN, Novak MJ, Sridhara R: Modeling toxicity and response in carboplatin-based combination chemotherapy. Semin Oncol 21: 7–19, 1994

    Google Scholar 

  19. Canal P, Chatelut E, Guichard S: Practical treatment guide for dose individualisation in cancer chemotherapy. Drugs 56: 1019–1038, 1998

    Google Scholar 

  20. Gianni L, Kearns CM, Giani A, Capri G, Vigano L, Lacatelli A, Bonadonna G, Egorin MJ: Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans. J Clin Oncol 13: 180–190, 1995

    Google Scholar 

  21. Cvitkovic E, Bekradda M: Oxaliplatin: a new therapeutic option in colorectal cancer. Semin Oncol 26: 647–662, 1999

    Google Scholar 

  22. Pignon T, Lacarelle B, Duffaud F, Guillet P, Catalin J, Durand A, Monjanel S, Favre R: Pharmacokinetics of high-dose methotrexate in adult osteogenic sarcoma. Cancer Chemother Pharmacol 33: 420–424, 1994

    Google Scholar 

  23. Delepine N, Delepine G, Cornille H, Brion F, Arnaud P, Desbois JC: Dose escalation with pharmacokinetics monitoring in methotrexate chemotherapy of osteosarcoma. Anticancer Res 15: 489–494, 1995

    Google Scholar 

  24. Calvert H, Judson I, Van der Vijgh WJ: Platinum complexes in cancer medicine: pharmacokinetics and pharmacodynamics in relation to toxicity and therapeutic activity. Cancer Surv 17: 189–217, 1993

    Google Scholar 

  25. Perdaems N, Bachaud JM, Rouzaud P, Murris-Espin M, Hermant C, Mihura J, Lochon I, Houin G, Canal P, Chatelut E: Relation between unbound plasma concentrations and toxicity in a prolonged oral etoposide schedule. Eur J Clin Pharmacol 54: 677–683, 1998

    Google Scholar 

  26. Goa KL, Faulds D: Vinorelbine. A review of its pharmacological properties and clinical use in cancer chemotherapy. Drugs Aging 5: 200–234, 1994

    Google Scholar 

  27. Balis FM, Holcenberg JS, Bleyer WA: Clinical pharmacokinetics of commonly used anticancer drugs. Clin Pharmacokinet 8: 202–232, 1983

    Google Scholar 

  28. Peters GJ, Schornagel JH, Milano G: A. Clinical pharmacokinetics of anti-metabolites. Cancer Surv 17: 123–156, 1993

    Google Scholar 

  29. Schellens JH, Planting AS, Ma J, Maliepaard M, de Vos A, de Boer DM, Verweij J: Adaptive intrapatient dose escalation of cisplatin in patients with advanced head and neck cancer. Anticancer Drugs 12: 667–675, 2001

    Google Scholar 

  30. Joel SP, Shah R, Clark PI, Slevin ML: Predicting etoposide toxicity: relationship to organ function and protein binding. J Clin Oncol 14: 257–267, 1996

    Google Scholar 

  31. Stewart CF: Use of etoposide in patients with organ dysfunction: pharmacokinetic and pharmacodynamic considerations. Cancer Chemother Pharmacol 34(suppl): S76–S83, 1994

    Google Scholar 

  32. Reyno LM, Egorin MJ, Canetta RM, Jodrell DI, Swenerton KD, Pater JL, Burroughs JN, Novak MJ, Sridhara R: Impact of cyclophosphamide on relationships between carboplatin exposure and response or toxicity when used in the treatment of advanced ovarian cancer. J Clin Oncol 11: 1156–1164, 1993

    Google Scholar 

  33. Belani CP, Kearns CM, Zuhowski EG, Erkmen K, Hiponia D, Zacharski D, Engstrom C, Ramanathan RK, Capozzoli MJ, Aisner J, Egorin MJ: Phase I trial, including pharmacokinetic and pharmacodynamic correlations, of combination paclitaxel and carboplatin in patients with metastatic non-small-cell lung cancer. J Clin Oncol 17: 676–684, 1999

    Google Scholar 

  34. Calvert AH, Ghokul S, Al Azraqi A, Wright J, Lind M, Bailey N, Highley M, Siddiqui N, Lunec J, Sinha D, Boddy A, Roberts T, Fenwick J: Carboplatin and paclitaxel, alone and in combination: dose escalation, measurement of renal function, and role of the p53 tumor suppressor gene. Semin Oncol 26: 90–94, 1999

    Google Scholar 

  35. Bertrand R, O'Connor PM, Kerrigan D, Pommier Y: Sequential administration of camptothecin and etoposide circumvents the antagonistic cytotoxicity of simultaneous drug administration in slowly growing human colon carcinoma HT-29 cells. Eur J Cancer 28A: 743–748, 1992

    Google Scholar 

  36. Fischel JL, Etienne MC, Formento P, Milano G: Search for the optimal schedule for the oxaliplatin/5–fluorouracil association modulated or not by folinic acid: preclinical data. Clin Cancer Res 4: 2529–2535, 1998

    Google Scholar 

  37. Gauvin A, Bressolle F, Martineau P, Astre C, Pinguet F: In vitro schedule-dependent interaction between irinotecan and vinorelbine in NCI H460 non-small cell lung cancer cell line. Anticancer Res 22: 905–912, 2002

    Google Scholar 

  38. Perez EA, Buckwalter CA: Sequence-dependent cytotoxicity of etoposide and paclitaxel in human breast and lung cancer cell lines. Cancer Chemother Pharmacol 41: 448–452, 1998

    Google Scholar 

  39. McLeod HL: Clinically relevant drug-drug interactions in oncology. Br J Clin Pharmacol, 45: 539–544, 1998

    Google Scholar 

  40. Balis FM: Pharmacokinetic drug interactions of commonly used anticancer drugs. Clin Pharmacokinet 11: 223–235, 1986

    Google Scholar 

  41. Kohne CH, Grothey A, Bokemeyer C, Bontke N, Aapro M: Chemotherapy in elderly patients with colorectal cancer. Ann Oncol 12: 435–442, 2001

    Google Scholar 

  42. Tirelli U, Aapro M, Obrist R, Festen J, Scheider M, Fentiman I, Monfardini S: Cancer treatment and old people. Lancet 338: 114, 1991

    Google Scholar 

  43. Knoester PD, Underberg WJ, Beijnen JH: Clinical pharmacokinetics and pharmacodynamics of anticancer agents in pediatric patients (review). Anticancer Res 13: 1795–1808, 1993

    Google Scholar 

  44. Capizzi RL, Oster W: Protection of normal tissue from the cytotoxic effects of chemotherapy and radiation by amifostine: clinical experiences. Eur J Cancer 31A(suppl 1): S8–S13, 1995

    Google Scholar 

  45. Evans WE, Relling MV: Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286: 487–491, 1999

    Google Scholar 

  46. Diasio RB, Johnson MR: The role of pharmacogenetics and pharmacogenomics in cancer chemotherapy with 5–fluorouracil. Pharmacology 61: 199–203, 2000

    Google Scholar 

  47. Levi F, Brienza S, Metzer G, Depres-Brummer P, Bertheault-Cvitkovic F, Zidani R, Adam R, Misset JL: Implications of chronobiology for 5–fluorouracil (5–FU) efficacy. Adv Exp Med Biol 339: 169–183, 1993

    Google Scholar 

  48. Levi F, Metzger G, Massari C, Milano G: Oxaliplatin: pharmacokinetics and chronopharmacological aspects. Clin Pharmacokinet 38: 1–21, 2000

    Google Scholar 

  49. Canal P, Sqalli A, de Forni M, Chevreau C, Pujol A, Bugat R, Roche H, Oustrin J, Houin G: Chronopharmacokinetics of doxorubicin in patients with breast cancer. Eur J Clin Pharmacol 40: 287–291, 1991

    Google Scholar 

  50. Hrushesky WJ: Circadian timing of cancer chemotherapy. Science 228: 73–75, 1985

    Google Scholar 

  51. Kerr DJ, Lewis C, O'Neil B, Lawson N, Blackie RG, Newell DR, Boxall F, Cox J, Rankin EM, Kaye SB: The myelotoxicity of carboplatin is influenced by the time of its administration. Hematol Oncol 8: 59–63, 1990

    Google Scholar 

  52. Smaaland R: Circadian rhythm of cell division. Prog Cell Cycle Res 2: 241–266, 1996

    Google Scholar 

  53. Dennis MJ, Beijnen JH, Grochow LB, van Warmerdam LJ: An overview of the clinical pharmacology of topotecan. Semin Oncol 24: S5–S5, 1997

    Google Scholar 

  54. Kollmannsberger C, Mross K, Jakob A, Kanz L, Bokemeyer C: Topotecan — A novel topoisomerase I inhibitor: pharmacology and clinical experience. Oncology 56: 1–12, 1999

    Google Scholar 

  55. Hochster H, Liebes L, Speyer J, Sorich J, Taubes B, Oratz R, Wernz J, Chachoua A, Blum RH, Zeleniuch-Jacquotte A: Effect of prolonged topotecan infusion on topoisomerase 1 levels: a phase I and pharmacodynamic study. Clin Cancer Res 3: 1245–1252, 1997

    Google Scholar 

  56. Gerrits CJ, Schellens JH, Burris H, Eckardt JR, Planting AS, van der Burg ME, Rodriguez GI, Loos WJ, van BV, Hudson I, Von Hoff DD, Verweij J: A comparison of clinical pharmacodynamics of different administration schedules of oral topotecan (Hycamtin). Clin Cancer Res 5: 69–75, 1999

    Google Scholar 

  57. Gerrits CJ, Burris H, Schellens JH, Planting AS, van den Burg ME, Rodriguez GI, van BV, Loos WJ, Hudson I, Fields S, Verweij J, Von Hoff DD: Five days of oral topotecan (Hycamtin), a phase I and pharmacological study in adult patients with solid tumours. Eur J Cancer 34: 1030–1035, 1998

    Google Scholar 

  58. Schellens JH, Creemers GJ, Beijnen JH, Rosing H, Boer-Dennert M, McDonald M, Davies B, Verweij J: Bioavailability and pharmacokinetics of oral topotecan: a new topoisomerase I inhibitor. Br J Cancer 73: 1268–1271, 1996

    Google Scholar 

  59. Jonker JW, Smit JW, Brinkhuis RF, Maliepaard M, Beijnen JH, Schellens JH, Schinkel AH: Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst 92: 1651–1656, 2000

    Google Scholar 

  60. Rowinsky EK, Kaufmann SH, Baker SD, Grochow LB, Chen TL, Peereboom D, Bowling MK, Sartorius SE, Ettinger DS, Forastiere AA, Donehower RC: Sequences of topotecan and cisplatin: phase I, pharmacologic, and in vitro studies to examine sequence dependence. J Clin Oncol 14: 3074–3084, 1996

    Google Scholar 

  61. O'Dwyer PJ, LaCreta FP, Haas NB, Halbherr T, Frucht H, Goosenberg E, Yao KS: Clinical, pharmacokinetic and biological studies of topotecan. Cancer Chemother Pharmacol 34(suppl): S46–S52, 1994

    Google Scholar 

  62. Grochow LB, Rowinsky EK, Johnson R, Ludeman S, Kaufmann SH, McCabe FL, Smith BR, Hurowitz L, DeLisa A, Donehower RC, Noe DA: Pharmacokinetics and pharmacodynamics of topotecan in patients with advanced cancer. Drug Metab Dispos 20: 706–713, 1992

    Google Scholar 

  63. O'Reilly S, Rowinsky EK, Slichenmyer W, Donehower RC, Forastiere AA, Ettinger DS, Chen TL, Sartorius S, Grochow LB: Phase I and pharmacologic study of topotecan in patients with impaired renal function. J Clin Oncol 14: 3062–3073, 1996

    Google Scholar 

  64. Gallo JM, Laub PB, Rowinsky EK, Grochow LB, Baker SD: Population pharmacokinetic model for topotecan derived from phase I clinical trials. J Clin Oncol 18: 2459–2467, 2000

    Google Scholar 

  65. Montazeri A, Boucaud M, Lokiec F, Pinguet F, Culine S, Deporte-Fety R, Albin N, Laguerre B, Goupil A, Bugat R, Canal P, Chatelut E: Population pharmacokinetics of topotecan: intraindividual variability in total drug. Cancer Chemother Pharmacol 46: 375–381, 2000

    Google Scholar 

  66. Zamboni WC, Houghton PJ, Johnson RK, Hulstein JL, Crom WR, Cheshire PJ, Hanna SK, Richmond LB, Luo X, Stewart CF: Probenecid alters topotecan systemic and renal disposition by inhibiting renal tubular secretion. J Pharmacol Exp Ther 284: 89–94, 1998

    Google Scholar 

  67. Rosing H, van Zomeren DM, Doyle E, ten Bokkel WW, Schellens JH, Bult A, Beijnen JH: Quantification of topotecan and its metabolite N-desmethyltopotecan in human plasma, urine and faeces by high-performance liquid chromatographic methods. J Chromatogr B Biomed Sci Appl 727: 191–203, 1999

    Google Scholar 

  68. Rosing H, van Zomeren DM, Doyle E, Bult A, Beijnen JH: O-glucuronidation, a newly identified metabolic pathway for topotecan and N-desmethyl topotecan. Anticancer Drugs 9: 587–592, 1998

    Google Scholar 

  69. Zamboni WC, Gajjar AJ, Heideman RL, Beijnen JH, Rosing H, Houghton PJ, Stewart CF: Phenytoin alters the disposition of topotecan and N-desmethyl topotecan in a patient with medulloblastoma. Clin Cancer Res 4: 783–789, 1998

    Google Scholar 

  70. Montazeri A, Culine S, Laguerre B, Pinguet F, Lokiec F, Albin N, Goupil A, Deporte-Fety R, Bugat R, Canal P, Chatelut E: Individual adaptive dosing of topotecan in ovarian cancer. Clin Cancer Res 8: 394–399, 2002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatelut, E., Delord, JP. & Canal, P. Toxicity Patterns of Cytotoxic Drugs. Invest New Drugs 21, 141–148 (2003). https://doi.org/10.1023/A:1023565227808

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023565227808

Navigation