Advertisement

Investigational New Drugs

, Volume 21, Issue 1, pp 21–32 | Cite as

Reversal of Tumor-induced Immunosuppression by TGF-β Inhibitors

  • Slawomir Wojtowicz-Praga
Article

Abstract

The immune system is responsible for the early detection and destruction of newly transformed malignant cells. Some transformed cells become immunologically invisible by passive avoidance of immune surveillance (i.e., when tumor cells are immunologically indistinguishable from normal cells). Other transformed cells actively secrete cytokines that effectively blind the immune system to the presence of abnormal antigens on the tumor cell surface. Transforming growth factor-β (“TGF-β”), which is expressed by a majority of malignant tumors, is the most potent immunosuppressor and therefore, the most likely cytokine to be responsible for the latter phenomenon. In addition to playing a key role in tumor-induced immunosuppression, TGF-β stimulates angiogenesis. Interestingly, tumor cells eventually become refractory to TGF-β-mediated growth arrest, either due to loss of TGF-β receptors or due to dysregulation in TGF-β signaling pathways. Neutralization of TGF-β or inhibition of its production is an effective method of cancer treatment in variety of animal models. Several agents targeting TGF-β are in the early stages of development and include anti-TGF-β antibodies, small molecule inhibitors of TGF-β, Smad inhibitors and antisense gene therapy. Since tumors may express more than one isoform of TGF-β, these new drugs should target all three TGF-β isoforms produced by human tumors. The effects of therapies targeting TGF-β are likely to be synergistic with cytotoxic chemotherapy and immunotherapy. Reversal of TGF-β-induced immunosuppression is a new and promising approach to cancer therapy, with potential applications in other diseases such as AIDS.

TGF-β TGF-β inhibitors malignancy cancer immunosuppression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rifkin DB, Kojima S, Abe M, Harpel JG: TGF-beta: structure, function, and formation. Thromb Haemost 70: 177–179, 1993Google Scholar
  2. 2.
    Kingsley DM: The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8: 133–146, 1994Google Scholar
  3. 3.
    Okragly A, Balwit JM, Haak-Frendscho: Transforming growth factor beta-1 (TGF-beta-1): a biological paradox. Promega Notes Mag 10: 10–18, 1994Google Scholar
  4. 4.
    Norgaard P, Hougaard S, Poulsen HS, Spang-Thomsen M: Transforming growth factor β and cancer. Cancer Treat Rev 21: 367–403, 1995Google Scholar
  5. 5.
    Kim SJ, Romeo D, Yoo YD, Park K: Transforming growth factor-beta: expression in normal and pathological conditions. Horm Res 42: 5–8, 1994Google Scholar
  6. 6.
    Miyazono K, Ichijo H, Heldin CH: Transforming growth factor-beta: latent forms, binding proteins and receptors. Growth Factors 8: 11–22, 1993Google Scholar
  7. 7.
    Dallas SL, Miyazono K, Skerry TM, Mundy GR, Bonewald LF: Dual role for the latent transforming growth factor-beta binding protein in storage of latent TGF-beta in the extracellular matrix and as a structural matrix protein. J Cell Biol 131: 539–549, 1995Google Scholar
  8. 8.
    Locci P, Marinucci L, Lilli C, Martinese D, Becchetti E: Transforming growth factor beta 1–hyaluronic acid interaction. Cell Tissue Res 281: 317–324, 1995Google Scholar
  9. 9.
    Flaumenhaft R, Kojima S, Abe M, Rifkin DB: Activation of latent transforming growth factor beta. Adv Pharmacol 24: 51–76, 1993Google Scholar
  10. 10.
    Schultz-Cherry S, Ribeiro S, Gentry L, Murphy-Ullrich JE: Thrombospondin binds and activates the small and large forms of latent transforming growth factor-beta in a chemically defined system. J Biol Chem 269: 26775–26782, 1994Google Scholar
  11. 11.
    Horimoto M, Kato J, Takimoto R, Terui T, Mogi Y, Niitsu Y: Identification of a transforming growth factor beta-1 activator derived from a human gastric cancer cell line. Br J Cancer 72: 676–682, 1995Google Scholar
  12. 12.
    Sasaki A, Naganuma H, Satoh E, Nagasaka M, Isoe S, Nakano S, Nukui H: Secretion of transforming growth factor-beta 1 and-beta 2 by malignant glioma cells. Neurol Med Chir 35: 423–430, 1995Google Scholar
  13. 13.
    Yu Q, Stamenkovic I: Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev 14: 163–176, 2000Google Scholar
  14. 14.
    Wojtowicz-Praga S: Matrix metalloproteinase inhibitors. In: Abelloff MD et al. (eds) Clinical Oncology, 2nd edn, 2000, pp 251–259Google Scholar
  15. 15.
    Lin HY, Moustakas A: TGF-beta receptors: structure and function. Cell Mol Biol 40: 337–349, 1994Google Scholar
  16. 16.
    Okadome T, Yamashita H, Franzen P, Moren A, Heldin CH, Miyazono K: Distinct roles of the intracellular domains of transforming growth factor-beta type I and type II receptors in signal transduction. J Biol Chem 269: 30753–30756, 1994Google Scholar
  17. 17.
    Wrana JL: TGF-β receptors and signaling mechanisms. Miner Electrolyte Metab 24: 120–130, 1998Google Scholar
  18. 18.
    Lu KX, Lodish HF: Signaling by chimeric erythropoietin-TGF-β receptors: homodimerization of the cytoplasmic domain of type I TGF-β receptor and heterodimerization with type II receptor are both required for intracellular signal transduction. EMBO J 15: 4485–4496, 1996Google Scholar
  19. 19.
    Hartsough MT, Mulder KM: Transforming growth factor-β signaling in epithelial cells. Pharmacol Ther 75: 21–41, 1997Google Scholar
  20. 20.
    Hartsough MT, Frey RS, Zipfel PA, Buard A, Cook SJ, McCormick F, Mulder KM: Altered transforming growth factor-β signaling in epithelial cells when Ras activation is blocked. J Biol Chem 271: 22368–22375, 1996Google Scholar
  21. 21.
    Frey RS, Mulder KM: Involvement of extracellular signal-regulated and stress-activated protein kinase/Jun N-terminal kinase activation by transforming growth factor β in the negative growth control of breast cancer cells. Cancer Res 57: 628–633, 1997Google Scholar
  22. 22.
    Heldin CH, Miyazono K, ten Dijke P: TGF-β signaling from cell membrane to nucleus through SMAD proteins. Nature (Lond.) 390: 465–471, 1997Google Scholar
  23. 23.
    Kretzschmar M, Massague J: SMADs: mediators and regulators of TGF-β signaling. Curr Opin Genet Dev 8: 103–111, 1998Google Scholar
  24. 24.
    Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J, Heldin CH, Miyazono K, ten Dijke P: TGF-β receptor-mediated signaling through Smad2, Smad3 and Smad 4. EMBO J 16: 5353–5362, 1997Google Scholar
  25. 25.
    Liu X, Yue J, Frey RS, Zhu Q, Mulder KM: Transforming growth factor β signaling through Smad1 in human breast cancer cells. Cancer Res 58: 4752–4757, 1998Google Scholar
  26. 26.
    Padgett RW, Cho SH, Evangelista C: Smads are the central component in transforming growth factor-β signaling. Pharmacol Ther 78: 47–52, 1998Google Scholar
  27. 27.
    Zhang Y, Musci T, Derynck R: The tumor suppressor Smad4/DPC4 as a central mediator of Smad function. Curr Biol 7: 270–276, 1996Google Scholar
  28. 28.
    Imamura T, Takase M, Nishihara A, Oeda E, Hanai J, Kawabata M, Miyazono K: Smad6 inhibits signaling by the TGF-β superfamily. Nature (Lond.) 389: 622–626, 1997Google Scholar
  29. 29.
    Nakao A, Afrakhte M, Moren A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH, ten Dijke P: Identification of Smad7, a TGF-β-inducible antagonist of TGF-β signaling. Nature (Lond.) 389: 631–635, 1997Google Scholar
  30. 30.
    Zhang YE, Yu L, Hebert MC: Transforming Growth Factor-B receptor activated p38 MAP kinase mediates Smad-independent TGF-B responses. PAACR: 762, 2002 (Abstract)Google Scholar
  31. 31.
    Wojtowicz-Praga S: Reversal of tumor-induced immunosuppression: a new approach to cancer therapy. J Immunother 20: 165–177, 1997Google Scholar
  32. 32.
    Reiss M, Barcellos-Hoff MH: Transforming growth factor-beta in breast cancer: a working hypothesis. Breast Cancer Res Treat 45: 81–95, 1997Google Scholar
  33. 33.
    Baillie R, Coombes RC, Smith J: Multiple forms of TGF-beta 1 in breast tissues: a biologically active form of the small latent complex of TGF-beta 1. Eur J Cancer 32A: 1566–1573, 1996Google Scholar
  34. 34.
    Steiner MS, Zhou ZZ, Tonb DC, Barrack ER: Expression of transforming growth factor-beta 1 in prostate cancer. Endocrinology 135: 2240–2247, 1994Google Scholar
  35. 35.
    Truong LD, Kadmon D, McCune BK, Flanders KC, Scardino PT, Thompson TC: Association of transforming growth factor-beta 1 with prostate cancer: an immunohistochemical study. Hum Pathol 24: 4–9, 1993Google Scholar
  36. 36.
    Fischer JR, Darjes H, Lahm H, Schindel M, Drings P, Krammer PH: Constitutive secretion of bioactive transforming growth factor beta 1 by small cell lung cancer cell lines. Eur J Cancer 30A: 2125–2129, 1994Google Scholar
  37. 37.
    Damstrup L, Rygaard K, Spang-Thomsen M, Skovgaard Poulsen H: Expression of transforming growth factor beta (TGF-beta) receptors and expression of TGF-beta 1, TGF-beta 2 and TGF-beta 3 in human small cell lung cancer cell lines. Br J Cancer 67: 1015–1021, 1993Google Scholar
  38. 38.
    Takanami I, Imamura T, Hashizume T, Kikuchi K, Yamamoto Y, Kodaira S: Transforming growth factor beta 1 as a prognostic factor in pulmonary adenocarcinoma. J Clin Pathol 47: 1098–1100, 1994Google Scholar
  39. 39.
    Friedman E, Gold LI, Klimstra D, Zeng ZS, Winawer S, Cohen A: High levels of transforming growth factor beta 1 correlate with disease progression in human colon cancer. Cancer Epidemiol Biomarkers Prev 4: 549–554, 1995Google Scholar
  40. 40.
    Friess H, Yamanaka Y, Buchler M, Ebert M, Beger HG, Gold LI, Korc M: Enhanced expression of transforming growth factor beta isoforms in pancreatic cancer correlates with decreased survival. Gastroenterology 105: 1846–1856, 1993Google Scholar
  41. 41.
    Bristow RE, Baldwin RL, Yamada SD, Korc M, Karlan BY: Altered expression of transforming growth factor-beta ligands and receptors in primary and recurrent ovarian carcinoma. Cancer 85: 658–668, 1999Google Scholar
  42. 42.
    Miyamoto H, Kubota Y, Shuin T, Torigoe S, Dobashi Y, Hosaka M: Expression of transforming growth factor-beta 1 in human bladder cancer. Cancer 75: 2565–2570, 1995Google Scholar
  43. 43.
    Williams AO, Ward JM, Li JF, Jackson MA, Flanders KC: Immunohistochemical localization of transforming growth factor-beta 1 in Kaposi's sarcoma. Hum Pathol 26: 469–473, 1995Google Scholar
  44. 44.
    Reed JA, McNutt NS, Prieto VG, Albino AP: Expression of transforming growth factor-beta 2 in malignant melanoma correlates with the depth of tumor invasion. Implications for tumor progression. Am J Pathol 145: 97–104, 1994Google Scholar
  45. 45.
    Arteaga CL, Hurd SD, Winnier AR, Johnson MD, Fendly BM, Forbes JT: Anti-transforming growth factor beta antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen Natural Killer cell activity. J Clin Invest 92: 2569–2576, 1993Google Scholar
  46. 46.
    Wojtowicz-Praga S, Verma UN, Wakefield L, Esteban JM, Hartmann D, Mazumder A: Modulation of B16 melanoma growth and metastasis by anti-transforming growth factor beta antibody and interleukin-2. J Immunother 19: 169–175, 1996Google Scholar
  47. 47.
    Fakhrai H, Dorigo O, Shawler DL, Lin H, Mercola D, Black KL, Royston I, Sobol RE: Eradication of established intracranial rat gliomas by transforming growth factor beta antisense gene therapy. Proc Natl Acad Sci USA 93: 2909–2914, 1996Google Scholar
  48. 48.
    Wright JA, Turley E, Greenberg AH: Transforming growth factor beta and fibroblast growth factor as promoters of tumor progression to malignancy. Crit Rev Oncog 4: 473–492, 1993Google Scholar
  49. 49.
    Assoian RK, Sporn MB: Type β transforming growth factor in human platelets: release during platelet degranulation and action on vascular smooth muscle cells. J Cell Biol 102: 1217–1223, 1996Google Scholar
  50. 50.
    Puolakkainen P, Twardzik D, Ranchalis J, Moroni M, Mandeli J, Paciucci PA: Increase of plasma transforming growth factor beta (TGF-beta) during immunotherapy with IL-2. Cancer Invest 13: 583–589, 1995Google Scholar
  51. 51.
    Wojtowicz-Praga S: Transforming growth factor-β and tumor-induced immunosuppression. Electr J Oncol (http://ejo.univ-lyonl.fr), 1: 52–63, 2000Google Scholar
  52. 52.
    Derynck R, Akhurst RJ, Balmain A: TGF-β signaling in tumor suppression and cancer progression. Nat Genet 29(2): 117–129, 2001Google Scholar
  53. 53.
    Pasche B: Role of transforming growth factor beta in cancer. J Cell Physiol 186: 153–168, 2001Google Scholar
  54. 54.
    Kadin ME, Cavaille-Coll MW, Gertz R, Massague J, Cheifetz S, George D: Loss of receptors for transforming growth factor beta in human T-cell malignancies. Proc Natl Acad Sci USA 91(13): 6002–6006, 1994Google Scholar
  55. 55.
    Francis-Thickpenny KM, Richardson DM, van Ee CC, Love DR, Winship IM, Baguley BC, Chenevix-Trench G, Shelling AN: Analysis of the TGF beta functional pathway in epithelial ovarian carcinoma. Br J Cancer 85(5): 687–691, 2001Google Scholar
  56. 56.
    Ueki N, Nakazato M, Ohkawa T, Ikeda T, Amuro Y, Hada T, Higashino K: Excessive production of transforming growth-factor beta 1 can play an important role in the development of tumorigenesis by its action for angiogenesis: validity of neutralizing antibodies to block tumor growth. Biochim Biophys Acta 1137: 189–196, 1992Google Scholar
  57. 57.
    Khew-Goodall Y, Gamble JR, Vadas MA: Regulation of adhesion and adhesion molecules in endothelium by transforming growth factor-beta. Curr Top Microbiol Immunol 184: 187–199, 1993Google Scholar
  58. 58.
    Newman MJ: Transforming growth factor beta and the cell surface in tumor progression. Cancer Metastasis Rev 12: 239–254, 1993Google Scholar
  59. 59.
    Maxwell M, Galanopoulos T, Neville-Golden J, Antoniades HN: Effect of the expression of transforming growth factor-beta 2 in primary human glioblastomas on immunosuppression and loss of immune surveillance. J Neurosurg 76: 799–804, 1992Google Scholar
  60. 60.
    Mizoguchi H, O'Shea JJ, Longo DL, Loeffler CM, McVicar DW, Ochoa AC: Alterations in signal transduction molecules in T lymphocytes from tumor-bearing mice. Science 258: 1795–1798, 1992Google Scholar
  61. 61.
    Ebert EC: Inhibitory effects of transforming growth factor-beta (TGF-beta) on ain functions of intraepithelial lymphocytes. Clin Exp Immunol 115: 415–420, 1999Google Scholar
  62. 62.
    Geller RL, Smyth MJ, Strobl SL, Bach FH, Ruscetti FW, Longo DL, Ochoa AC: Generation of lymphokine activated killer activity in T cells. Possible regulatory circuits. J Immunol 146: 3280–3288, 1991Google Scholar
  63. 63.
    Ruscetti F, Varesio L, Ochoa A, Ortaldo J: Pleiotropic effects of transforming growth factor-beta on cells of the immune system. Ann NY Acad Sci 685: 488–500, 1993Google Scholar
  64. 64.
    Naganuma H, Sasaki A, Satoh E, Nagasaka M, Nakano S, Isoe S, Tasaka K, Nukui H: Inhibition of tumor necrosis factor-alpha and-beta secretion by lymphokine activated killer cells by transforming growth factor-beta. Jpn J Cancer Res 85: 952–957, 1994Google Scholar
  65. 65.
    Chao CC, Hu S, Sheng WS, Tsang M, Peterson PK: Tumor necrosis factor-alpha mediates the release of bioactive transforming growth factor-beta in murine microglial cell cultures. Clin Immunol Immunopathol 77: 358–365, 1995Google Scholar
  66. 66.
    Gray JD, Hirokawa M, Horwitz DA: The role of transforming growth factor beta in the generation of suppression: an interaction between CD8+ T and NK cells. J Exp Med 180: 1937–1942, 1994Google Scholar
  67. 67.
    Stavnezer J: Regulation of antibody production and class switching by TGF-beta. J Immunol 155: 1647–1651, 1995Google Scholar
  68. 68.
    Hoefer M, Anderer FA: Anti-(transforming growth factor beta) antibodies with predefined specificity inhibit metastasis of highly tumorigenic human xenotransplants in nu/nu mice. Cancer Immunol Immunother 41: 302–308, 1995Google Scholar
  69. 69.
    Dziegielewska KM, Brown WM, Casey SJ, Christie DL, Foreman RC, Hill RM, Saunders NR: The complete cDNA and amino acid sequence of bovine fetuin. Its homology with alpha 2HS glycoprotein and relation to other members of the cystatin superfamily. J Biol Chem 265(8): 4354–4357, 1990Google Scholar
  70. 70.
    Triffitt JT, Gebauer I, Ashton BA, Owen ME, Reynolds JJ: Origin of plasma alpha2HS-glycoprotein and its accumulation in bone. Nature 262(5565): 226–227, 1976Google Scholar
  71. 71.
    Demetriou M, Binkert C, Sukhu B, Tenenbaum HC, Dennis JW: Fetuin/alpha2–HS glycoprotein is a transforming growth factor-beta type II receptor mimic and cytokine antagonist. J Biol Chem 271: 12755–12761, 1996Google Scholar
  72. 72.
    Binkert C, Demetriou M, Sukhu B, Szweras M, Tenenbaum HC, Dennis JW: Regulation of osteogenesis by fetuin. J Biol Chem 274(40): 28514–28520, 1999Google Scholar
  73. 73.
    Harthun NL, Weaver AM, Brinckerhoff LH, Deacon DH, Gonias SL, Slingluff CL Jr: Activated alpha 2–macroglobulin reverses the immunosuppressive activity in human breast cancer cell-conditioned medium by selectively neutralizing transforming growth factor-beta in the presence of interleukin-2. J Immunother 21: 85–94, 1998Google Scholar
  74. 74.
    Yamaguchi Y, Mann DM, Ruoslahti E: Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature 346(6281): 281–284, 1990Google Scholar
  75. 75.
    Hildebrand A, Romaris M, Rasmussen LM, Heinegard D, Twardzik DR, Border WA, Ruoslahti E: Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem J 302(Pt 2): 527–534, 1994Google Scholar
  76. 76.
    Takeuchi Y, Kodama Y, Matsumoto T: Bone matrix decorin binds transforming growth factor-beta and enhances its bioactivity. J Biol Chem 269(51): 32634–32638, 1994Google Scholar
  77. 77.
    Stander M, Naumann U, Dumitrescu L, Heneka M, Loschmann P, Gulbins E, Dichgans J, Weller M: Decorin gene transfer-mediated suppression of TGF-beta synthesis abrogates experimental malignant glioma growth in vivo. Gene Ther 5: 1187–1194, 1998Google Scholar
  78. 78.
    Lopez-Casillas F, Payne HM, Andres JL, Massague J: Beta-glycan can act as a dual modulator of TGF-beta access to signaling receptors: mapping of ligand binding and GAG attachment sites J Cell Biol 124(4): 557–568, 1994Google Scholar
  79. 79.
    Bandyopadhyay A, Lopez-Casillas F, Sun L: Administration of a recombinant TGF-beta type III receptor (soluble RIII) inhibits angiogenesis and tumor growth in human breast cancer xenograft. PAACR: 436, 2002 (Abstract)Google Scholar
  80. 80.
    Won J, Kim H, Park EJ, Hong Y, Kim SJ, Yun Y: Tumorigenicity of mouse thymoma is suppressed by soluble type II transforming growth factor β receptor therapy. Cancer Res 59: 1273–1277, 1999Google Scholar
  81. 81.
    Dukhanina OI, Yang Y, Tang B, Mamura M, Letterio J, Anver M, Green J, Merlino G, Wakefield L: Expression of a soluble TGF-β antagonist in vivo protects against metastasis without adverse side-effects. PAACR: 3333, 2000 (Abstract).Google Scholar
  82. 82.
    Ge R, Liu D, Joly A, Dugar S, Chakravarty J, Henson M, McEnroe G, Schreiner G, Reiss M: Selective inhibition of transforming growth factor-β signaling blocks invasiveness of human breast carcinoma cells in vitro. PAACR: 4746, 2002 (Abstract)Google Scholar
  83. 83.
    Zhang Y, Musci T, Derynck R: The tumor suppressor Smad4/DPC 4 as a central mediator of Smad function. Curr Biol 7: 270–276, 1997Google Scholar
  84. 84.
    Zhao J, Lee M, Smith S, Warburton D: Abrogation of Smad3 and Smad2 or of Smad4 gene expression positively regulates murine embryonic lung branching morphogenesis in culture. Dev Biol 194: 182–195, 1998Google Scholar
  85. 85.
    Saha D, Datta PK, Beauchamp RD: Oncogenic ras represses transforming growth factor-beta/Smad signaling by degrading tumor suppressor Smad4. J Biol Chem 276(31): 29531–29537, 2001Google Scholar
  86. 86.
    Kleeff J, Ishiwata T, Maruyama H, Friess H, Truong P, Buchler MW, Falb D, Korc M: The TGF-beta signaling inhibitor Smad7 enhances tumorigenicity in pancreatic cancer. Oncogene 18(39): 5363–5372, 1999Google Scholar
  87. 87.
    Bottinger EP, Factor VM, Tsang ML, Weatherbee JA, Kopp JB, Qian SW, Wakefield LM, Roberts AB, Thorgeirsson SS, Sporn MB: The recombinant proregion of transforming growth factor β1 (latency-associated peptide) inhibits active transforming growth factor β1 in transgenic mice. Proc Natl Acad Sci USA 93: 5877–5882, 1996Google Scholar
  88. 88.
    Wilkinson KA, Martin TD, Reba SM, Aung H, Redline RW, Boom WH, Toossi Z, Fulton SA: Latency-associated peptide of transforming growth factor beta enhances mycobacteriocidal immunity in the lung during mycobacterium bovis BCG infection in C57BL/6 mice. Infect Immun 68(11): 6505–6508, 2000Google Scholar
  89. 89.
    Gridley DS, Sura SS, Uhm JR, Lin CH, Kettering JD: Effects of anti-transforming growth factor-beta antibody and interleukin-2 in tumor-bearing mice. Cancer Biother (United States) 8: 159–170, 1993Google Scholar
  90. 90.
    Mao XW, Kettering JD, Gridley DS: Immunotherapy with low dose interleukin-2 and anti-transforming growth factor-beta antibody in a murine tumor model. Cancer Biother (United States) 9: 317–327, 1994Google Scholar
  91. 91.
    Hojo M, Morimoto T, Maluccio M, Asano T, Morimoto K, Lagman M, Shimbo T, Suthanthiran M: Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature 397: 530–534, 1999Google Scholar
  92. 92.
    Konneh M: Tranilast, Kissei pharmaceuticals. Idrugs 1(1): 141–146, 1998Google Scholar
  93. 93.
    Ikeda H, Inao M, Fujiwara K: Inhibitory effect of tranilast on activation and transforming growth factor beta 1 expression in cultured rat stellate cells. Biochem Biophys Res Commun 227(2): 322–327, 1996Google Scholar
  94. 94.
    Ward MR, Sasahara T, Agrotis A, Dilley RJ, Jennings GL, Bobik A: Inhibitory effects of tranilast on expression of transforming growth factor-beta isoforms and receptors in injured arteries. Atherosclerosis 137(2): 267–275, 1998Google Scholar
  95. 95.
    Kondo N, Fukutomi O, Shinbara M, Orii T: Inhibition of interferon-gamma and interleukin-2 production from lymphocytes stimulated with food antigens by an anti-allergic drug, Tranilast, in patients with food-sensitive atopic dermatitis. Biotherapy 8(1): 19–22, 1994Google Scholar
  96. 96.
    Isaji M, Miyata H, Ajisawa Y, Yoshimura N: Inhibition by tranilast of vascular endothelial growth factor (VEGF)/vascular permeability factor (VPF)-induced increase in vascular permeability in rats. Life Sci 63(4): 71–74, 1998Google Scholar
  97. 97.
    Isaji M, Miyata H, Ajisawa Y, Takehana Y, Yoshimura N: Tranilast inhibits the proliferation, chemotaxis and tube formation of human microvascular endothelial cells in vitro and angiogenesis in vivo. Br J Pharmacol 122(6): 1061–1066, 1997Google Scholar
  98. 98.
    Platten M, Wild-Bode C, Wick W, Leitlein J, Dichgans J, Weller M: N-[3,4–dimethoxycinnamoyl]-anthranilic acid (tranilast) inhibits transforming growth factor-beta relesase and reduces migration and invasiveness of human malignant glioma cells. Int J Cancer 93(1): 53–61, 2001Google Scholar
  99. 99.
    Yashiro M, Chung YS, Sowa M: Tranilast (N-(3,4–dimethoxycinnamoyl) anthranilic acid) down-regulates the growth of scirrhous gastric cancer. Anticancer Res 17(2A): 895–900, 1997Google Scholar
  100. 100.
    Murahashi K, Yashiro M, Inoue T, Nishimura S, Matsuoka T, Sawada T, Sowa M, Hirakawa-Ys Chung K: Tranilast and cisplatin as an experimental combination therapy for scirrhous gastric cancer. Int J Oncol 13(6): 1235–1240, 1998Google Scholar
  101. 101.
    Nie L, Oishi Y, Doi I, Shibata H, Kojima I: Inhibition of proliferation of MCF-7 breast cancer cells by a blocker of Ca(2+)-permeable channel. Cell Calcium 22(2): 75–82, 1997Google Scholar
  102. 102.
    Yatsunami J, Aoki S, Fukuno Y, Kikuchi Y, Kawashima M, Hayashi SI: Antiangiogenic and antitumor effects of tranilast on mouse lung carcinoma cells. Int J Oncol 17(6): 1151–1156, 2000Google Scholar
  103. 103.
    Marzo AL, Fitzpatrick DR, Robinson BWS, Scott B: Antisense oligonucleotides specific for transforming growth factor β2 inhibit the growth of malignant mesothelioma both in vitro and in vivo. Cancer Res 57: 3200–3207, 1997Google Scholar
  104. 104.
    Fakhrai H, Mantil J, Liu L, Nicholson G, Satter CM, Ruppert J, Krause G, Saadatmandi N, Shawler DL: Treatment of glioma with a TGF-β antisense-modified tumor cell vaccine. PAACR, 714, 2002 (Abstract)Google Scholar
  105. 105.
    Dorigo O, Shawler DL, Royston I, Sobol RE, Berek JS, Fakhrai H: Combination of transforming growth factor beta antisense and interleukin-2 gene therapy in the murine ovarian teratoma model. Gynecol Oncol 71(2): 204–210, 1998Google Scholar
  106. 106.
    Hau P, Zellner A, Bogdahn U, Schulmeyer F, Bele S, Brawanski A, Brysch W, Goldbrunner M, Jachimczak P, Kunst M, Schlingensiepen R, Schlingensiepen K: A phase I/II dose escalation study to evaluate the safety and tolerability of phosphorothioate TGF-beta2 antisense oligonucleotides in patients with malignant glioma PASCO 37: 2066, 2001 (Abstract)Google Scholar
  107. 107.
    Hau P, Bogdahn U, Schulmeyer F, Brawanski A, Steinbrecher A, Zellner A, Goldbrunner M, Jachimczak P, Kunst M, Stauder G, Schlingensiepen KH, Schlingensiepen R: TGF-beta-2 antisense oligonucleotide AP12009 administered intratumorally to patients with malignant glioma in a clinical phase I/II dose escalation study: safety and preliminary efficacy data. PASCO 38: 109, 2002 (Abstract)Google Scholar
  108. 108.
    Brooks SP, Bernstein ZP, Schneider SL, Gollnick SO, Tomasi B: Role of transforming growth factor-beta1 in the suppressed allostimulatory function of AIDS patients. AIDS 12: 481–487, 1998Google Scholar
  109. 109.
    Shah AH, Lee C: TGF-beta-based immunotherapy for cancer: breaching the tumor firewall. Prostate 45(2): 167–172, 2000Google Scholar
  110. 110.
    Shah AH, Tabayoyong WB, Lee C: Transforming Growth Factor-β signaling in leukocytes is a viable target for retro-viral gene therapy in highly aggressive murine melanoma model. PAACR: 2943, 2002 (Abstract)Google Scholar
  111. 111.
    Gorelik L, Flavell RA: Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med 7(10): 1118–1122, 2001Google Scholar
  112. 112.
    Campbell JD, Cook G, Robertson SE, Fraser A, Boyd KS, Gracie JA, Franklin IM: Suppression of IL-2–induced T cell proliferation and phosphorylation of STAT3 and STAT5 by tumor-derived TGF beta is reversed by IL-15. J Immunol 167(1): 553–561, 2001Google Scholar
  113. 113.
    Teicher BA, Holden SA, Ara G, Chen G: Transforming growth factor-beta in in vivo resistance. Cancer Chemother Pharmacol 37: 601–609, 1996Google Scholar
  114. 114.
    Nash MA, Loercher AE, Freedman RS: In vitro growth inhibition of ovarian cancer cells by decorin: synergism of action between decorin and carboplatin. Cancer Res 59(24): 6192–6196, 1999Google Scholar
  115. 115.
    Rube CE, Uthe D, Schmid KW, Richter KD, Wessel J, Schuck A, Willich N, Rube C: Dose-dependent induction of transforming growth factor beta (TGF-beta) in the lung tissue of fibrosis-prone mice after thoracic irradiation. Int J Radiat Oncol Biol Phys 47(4): 1033–1042, 2000Google Scholar
  116. 116.
    Vujaskovic Z, Groen HJ: TGF-beta, radiation-induced pulmonary injury and lung cancer. Int J Radiat Biol 76(4): 511–516, 2000Google Scholar
  117. 117.
    Anscher MS, Kong FM, Jirtle RL: The relevance of transforming growth factor beta 1 in pulmonary injury after radiation therapy. Lung Cancer 19(2): 109–120, 1998Google Scholar
  118. 118.
    Su-Mi Chung, Jin-Hyoung Kang, Youn-soo Lee, Mi-Ryeong Ryu, Yeon-Shil Kim, Chul-Seung Kay, Sung-Whan Kim, Sei-Chul Yoon: Inhibitory Effect of Tranilast on Radiation-Induced Pneumonitis in C57BL/6 Mouse. PASCO 37, Abstract # 1112, 2001Google Scholar
  119. 119.
    Anscher MS, Marks LB, Shafman TD, Clough R, Huang H, Tisch A, Munley M, Herndon JE 2nd, Garst J, Crawford J, Jirtle RL: Using plasma transforming growth factor beta-1 during radiotherapy to select patients for dose escalation. J Clin Oncol 19(17): 3758–3765, 2001Google Scholar
  120. 120.
    Kropf J, Schurek JO, Wollner A, Gressner AM: Immunological measurement of transforming growth factor-beta 1 (TGF-beta 1) in blood; assay development and comparison. Clin Chem 43: 1965–1974, 1997Google Scholar
  121. 121.
    Hazelbag S, Fleuren GJ, Baelde JJ, Schuuring E, Kenter GG, Gorter A: Cytokine profile of cervical cancer cells. Gynecol Oncol 83(2): 235–243, 2001Google Scholar
  122. 122.
    Junker U, Knoefel B, Nuske K, Rebstock K, Steiner T, Wunderlich H, Junker K, Reinhold D: Transforming growth factor beta 1 is significantly elevated in plasma of patients suffering from renal cell carcinoma. Cytokine 8(10): 794–798, 1996Google Scholar
  123. 123.
    Kyrtsonis MC, Repa C, Dedoussis GV, Mouzaki A, Simeonidis A, Stamatelou M, Maniatis A: Serum transforming growth factor-beta 1 is related to the degree of immunoparesis in patients with multiple myeloma. Med Oncol 15(2): 124–128, 1998Google Scholar
  124. 124.
    Cook G, Campbell JD, Carr CE, Boyd KS, Franklin IM: Transforming growth factor beta from multiple myeloma cells inhibits proliferation and IL-2 responsiveness in T lymphocytes. J Leukoc Biol 66(6): 981–988, 1999Google Scholar
  125. 125.
    Pasini FS, Brentani MM, Kowalski LP, Federico MH: Transforming growth factor beta1, urokinase-type plasminogen activator and plasminogen activator inhibitor-1 mRNA expression in head and neck squamous carcinoma and normal adjacent mucosa. Head Neck 23(9): 725–732, 2001Google Scholar
  126. 126.
    Matoba H, Sugano S, Yamaguchi N, Miyachi Y: Expression of transforming growth factor-beta1 and transforming growth factor-beta Type-II receptor mRNA in papillary thyroid carcinoma. Horm Metab Res 30(10): 624–628, 1998Google Scholar
  127. 127.
    Yoshida K, Kuniyasu H, Yasui W, Kitadai Y, Toge T, Tahara E: Expression of growth factors and their receptors in human esophageal carcinomas: regulation of expression by epidermal growth factor and transforming growth factor alpha. J Cancer Res Clin Oncol 119(7): 401–407, 1993Google Scholar
  128. 128.
    Liu P, Menon K, Alvarez E, Lu K, Teicher BA: Transforming growth factor-beta and response to anticancer therapies in human liver and gastric tumors in vitro and in vivo. Int J Oncol 16(3): 599–610, 2000Google Scholar
  129. 129.
    Matsuzaki K, Date M, Furukawa F, Tahashi Y, Matsushita M, Sakitani K, Yamashiki N, Seki T, Saito H, Nishizawa M, Fujisawa J, Inoue K: Autocrine stimulatory mechanism by transforming growth factor beta in human hepatocellular carcinoma. Cancer Res 60(5): 1394–402, 2000Google Scholar
  130. 130.
    Genzyme press release: Genzyme General and Cambridge Antibody Technology Initiate Phase 1–2 Clinical Trial of CAT-192. November 12, 2001Google Scholar
  131. 131.
    Carrington L, Allamby D, McLeod D, Boulton M: RPE cell-mediated contraction of the retina; stimulation by TGF-β2 and reduction of stimulation in the presence of a human monoclonal antibody to human TGF-β2. Invest Ophtalmol Vis Sci 39: 566, 1998 (Abstract)Google Scholar
  132. 132.
    Ehrhart EJ, Segarini P, Tsang ML, Carroll AG, Barcellos-Hoff MH: Latent transforming growth factor beta1 activation in situ: quantitative and functional evidence after low-dose gamma-irradiation. FASEB J (12): 991–1002, 1997Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Slawomir Wojtowicz-Praga

There are no affiliations available

Personalised recommendations