Skip to main content
Log in

Analysis of Feature Dependencies in Sound Description

  • Published:
Journal of Intelligent Information Systems Aims and scope Submit manuscript

Abstract

Multimedia data, including sound databases, require signal processing and parameterization to enable automatic searching for a specific content. Indexing of musical audio material with high-level timbre information requires extraction of low-level sound parameters first. In this paper, we analyze regularities in musical sound description, for the data representing musical instrument sounds by means of spectral and time-domain features. We examined digital audio recordings of singular sounds for 11 instruments of definite pitch. Woodwinds, brass, and strings used in contemporary orchestras were investigated, for various fundamental frequencies of sound and articulation techniques. General-purpose data mining system Forty-Niner was applied to investigate dependencies between the sound attributes, and the results of the experiments are presented and discussed. We also indicate a broad range of possible industry applications, which may influence directions of further research in this domain. We summarize our paper with conclusions on representation of musical instrument sound, and the emerging issue of exploration of audio databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ando, S. and Yamaguchi, K. (1993). Statistical Study of Spectral Parameters in Musical Instrument Tones. J. Acoust. Soc. of America, 94(1), 37–45.

    Google Scholar 

  • Brown, J.C. (1999). Computer Identification of Musical Instruments Using Pattern Recognition with Cepstral Coefficients as Features. J. Acoust. Soc. of America, 105, 1933–1941.

    Google Scholar 

  • Brown, J.C., Houix, O., and McAdams, S. (2001). Feature Dependence in the Automatic Identification of Musical Woodwind Instruments. J. Acoust. Soc. of America, 109, 1064–1072.

    Google Scholar 

  • De Poli, G., Piccialli, A., and Roads, C. (1991). Representations of Musical Signals. MIT Press.

  • Eronen, A. and Klapuri, A. (2000). Musical Instrument Recognition Using Cepstral Coefficients and Temporal Features. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP 2000 (pp. 753–756). Plymouth, MA.

  • Fletcher, N.H. and Rossing, T.D. (1991). The Physics of Musical Instruments. Springer-Verlag.

  • Fujinaga, I. and MacMillan, K. (2000). Realtime Recognition of Orchestral Instruments. In Proceedings of the International Computer Music Conference (pp. 141–143).

  • Herrera, P., Amatriain, X., Batlle, E., and Serra, X. (2000). Towards Instrument Segmentation for Music Content Description: A Critical Review of Instrument Classification Techniques. In Proc. International Symp. on Music Information Retrieval ISMIR 2000, Plymouth, MA.

  • Hornbostel, E.M. and Sachs, C. (1914). Systematik der Musikinstrumente. Ein Versuch. Zeitschrift für Ethnologie, 46(4/5), 553–90. Also available at http://www.uni-bamberg.de/ppp/ethnomusikologie/HS-Systematik/HSSystematik.

    Google Scholar 

  • ISO/IEC JTC1/SC29/WG11. (2002). MPEG-7 Overview (Version 8). Available at http://mpeg.telecomitalialab.com/standards/mpeg-7/mpeg-7.htm.

  • Kaminskyj, I. (2000). Multi-Feature Musical Instrument Sound Classifier. MikroPolyphonie, The Online Contemporary Music Journal, 6.

  • Kostek, B. and Czyzewski, A. (2001). Representing Musical Instrument Sounds for Their Automatic Classification. J. Audio Eng. Soc., 49(9), 768–785.

    Google Scholar 

  • Kostek, B. and Wieczorkowska, A. (1997). Parametric Representation of Musical Sounds. Archives of Acoustics, 22, 3–26.

    Google Scholar 

  • Langley, P., Zytkow, J.M., Simon, H.A., and Bradshaw, G.L. (1986). The Search for Regularity: Four Aspects of Scientific Discovery. In R. Michalski, J. Carbonell, and T. Mitchell (Eds.), Machine Learning, Vol. 2 (pp. 425–469), Palo Alto, CA: Morgan Kaufmann Publishers.

    Google Scholar 

  • Lubniewski, Z. and Stepnowski, A. (1998). Sea Bottom Recognition Method Using Fractal Analysis and Scattering Impulse Response. Archives of Acoustics, 23, 499–511.

    Google Scholar 

  • Manjunath, B.S., Salembier, P., and Sikora, T. (2002). Introduction to MPEG-7. Multimedia Content Description Interface. Chichester, UK: John Wiley and Sons.

    Google Scholar 

  • Martin, K.D. and Kim, Y.E. (1998). 2pMU9. Musical Instrument Identification: A Pattern-Recognition Approach. Presented at the 136th Meeting of the Acoustical Society of America.

  • Opolko, F. and Wapnick, J. (1987). MUMS–McGill University Master Samples (in compact discs). Montreal, Canada: McGill University.

    Google Scholar 

  • Pollard, H.F. and Jansson, E.V. (1982). A Tristimulus Method for the Specification of Musical Timbre. Acustica, 51, 162–171.

    Google Scholar 

  • Quinlan, J.R. (1993). C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Subrahmanian, V.S. (1998). Principles of Multimedia Database Systems. San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Wieczorkowska, A. (1999a). The Recognition Efficiency of Musical Instrument Sounds Depending on Parameterization and Type of a Classifier. Ph.D. Thesis, Technical University of Gdansk, Poland.

    Google Scholar 

  • Wieczorkowska, A. (1999b). Rough Sets as a Tool for Audio Signal Classification. In Z.W. Ras and A. Skowron (Eds.), Foundations of Intelligent Systems (pp. 367–375), LNCS/LNAI 1609. Springer.

  • Zembowicz, R. and ŻZytkow, J.M. (1996). From Contingency Tables to Various Forms of Knowledge in Databases. In U.M. Kobsa, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (Eds.), Advances in Knowledge Discovery and Data Mining (pp. 329–349). AAAI Press.

  • Żytkow, J.M. and Zembowicz, R. (1993). Database Exploration in Search of Regularities. Journal of Intellingent Information Systems, 2, 39–81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicja A. Wieczorkowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wieczorkowska, A.A., Żytkow, J.M. Analysis of Feature Dependencies in Sound Description. Journal of Intelligent Information Systems 20, 285–302 (2003). https://doi.org/10.1023/A:1022864925044

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022864925044

Navigation