Skip to main content
Log in

Regular Self-Consistent Geometries with Infinite Quantum Backreaction in 2D Dilaton Gravity and Black Hole Thermodynamics: Unfamiliar Features of Familiar Models

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We analyze the rather unusual properties of some exact solutions in 2D dilaton gravity for which infinite quantum stresses on the Killing horizon can be compatible with regularity of the geometry. In particular, the Boulware state can support a regular horizon. We show that such solutions are contained in some well-known exactly solvable models (for example, RST). Formally, they appear to account for an additional coefficient B in the solutions (for the same Lagrangian which contains also “traditional” solutions) that gives rise to the deviation of temperature T from its Hawking value T H . The Lorentzian geometry, which is a self-consistent solution of the semiclassical field equations, in such models, is smooth even at B≠0 and there is no need to put B=0 (T=T H ) to smooth it out. We show how the presence of B≠0 affects the structure of spacetime. In contrast to “usual” black holes, full fledged thermodynamic interpretation, including definite value of entropy, can be ascribed (for a rather wide class of models) to extremal horizons, not to nonextreme ones. We find also new exact solutions for “usual” black holes (with T=T H ). The properties under discussion arise in the weak-coupling regime of the effective constant of dilaton-gravity interaction. Extension of features, traced in 2D models, to 4D dilaton gravity leads, for some special models, to exceptional nonextreme black holes having no own thermal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. D. Bekenstein, Phys. Rev. D 7, 2333(1973); 9, 3292(1974).

    Google Scholar 

  2. J. D. Bekenstein, Phys. Rev. Lett. 28, 452(1972).

    Google Scholar 

  3. J. D. Bekenstein, Phys. Rev. D 5, 1239(1972).

    Google Scholar 

  4. J. D. Bekenstein, Phys. Rev. D 5, 2403(1972).

    Google Scholar 

  5. C. G. Callan, S. Giddings, J. A. Harvey, and A. Strominger, Phys. Rev. D 45, R1005(1992). T. Banks, A. Dabholkar, M. R. Douglas, and M. O.’Loughlin, Phys. Rev. D 45, 3607(1992).

    Google Scholar 

  6. S. Nojiri and S. Odintsov, Int. J. Mod. Phys. A 16, 1015(2001).

    Google Scholar 

  7. D. Grumiller, W. Kummer, and D. V. Vasilevich, Phys. Rept. 369, 327(2002).

    Google Scholar 

  8. O. B. Zaslavskii, Phys. Rev. D 61, 064002(2000).

    Google Scholar 

  9. O. B. Zaslavskii, Phys. Lett. B 475, 33(1999).

    Google Scholar 

  10. J. G. Russo, L. Susskind, and L. Thorlacius, Phys. Rev. D 46, 3444(1992). 47, 533(1992).

    Google Scholar 

  11. J. Cruz and J. Navarro-Salas, Phys. Lett. B 375, 47(1996).

    Google Scholar 

  12. S. Trivedi, Phys. Rev. D 47, 4233(1993).

    Google Scholar 

  13. A. Fabbri and J. Navarro-Salas, Phys. Rev. D 58, 084011(1998).

    Google Scholar 

  14. S. W. Hawking, G. T. Horowitz, and S. F. Ross, Phys. Rev. D 51, 4302(1995).

    Google Scholar 

  15. C. Teitelboim, Phys. Rev. D 51, 4315(1995). 52, 6201(E)(1995).

    Google Scholar 

  16. G. Gibbons and R. Kallosh, Phys. Rev. D 51, 2839(1995).

    Google Scholar 

  17. O. B. Zaslavskii, Phys. Rev. D 59, 084013(1999).

    Google Scholar 

  18. O. B. Zaslavskii, Phys. Lett. B 459, 105(1999).

    Google Scholar 

  19. S. N. Solodukhin, Phys. Rev. D 53, 824(1996).

    Google Scholar 

  20. D. J. Loranz, W. A. Hiscock, and P. R. Anderson, Phys. Rev. D 52, 4554(1995).

    Google Scholar 

  21. A. Kumar and K. Ray, Phys. Rev. D 51, 5954(1995).

    Google Scholar 

  22. S. Bose, L. Parker, and Y. Peleg, Phys. Rev. D 52, 3512(1995).

    Google Scholar 

  23. A. J. M. Medved and G. Kunstatter, Phys. Rev. D 54, 104029(1999).

    Google Scholar 

  24. N. Berkovits, S. Gukov, and B. C. Vallilo, Nucl. Phys. B 614, 195(2001).

    Google Scholar 

  25. J. Preskill, P. Schwarz, A. Sapere, S. Trivedi, and F. Wilczek, Mod. Phys. Lett. A 6, 2353(1991).

    Google Scholar 

  26. C. F. E. Holzhey and F. Wilczek, Nucl. Phys. B 380, 447(1992).

    Google Scholar 

  27. S. Liberati, T. Rothman, and S. Sonego, Int. J. Mod. Phys. D 10, 33–40 (2001).

    Google Scholar 

  28. A. Strominger and C. Vafa, Phys. Lett. B 379, 99(1996).

    Google Scholar 

  29. C. Kiefer and J. Louko, Ann. Phys. (Leipzig) 8, 67(1999).

    Google Scholar 

  30. D. A. Lowe, Phys. Rev. Lett. 87, 029001(2001).

    Google Scholar 

  31. J. Matyjasek and O. B. Zaslavskii, Phys. Rev. D 64, 104018(2001).

    Google Scholar 

  32. M. Buric and V. Radovanovic, Class. Quant. Grav. 16, 3937(1999).

    Google Scholar 

  33. A. J. M. Medved and G. Kunstatter, Phys.Rev. D 63, 104005(2001).

    Google Scholar 

  34. V. P. Frolov, W. Israel, and S. N. Solodukhin, Phys. Rev. D 54, 2732(1996).

    Google Scholar 

  35. V. P. Frolov, Phys. Rev. D 46, 5383(1992). G. W. Gibbons and M. J. Perry Int. J. Mod. Phys. D 1, 335(1992).

    Google Scholar 

  36. P. Jordan, Phys. 157, 128(1959). C. H. Brans and R. H. Dicke, Phys. Rev. 124, 925(1961).

    Google Scholar 

  37. K. D. Krori and D. R. Bhattacharjee, J. Math. Phys. 23, 637(1982).

    Google Scholar 

  38. M. Campanelli and C. O. Lousto, Int. J. Mod. Phys. D 2, 451(1993).

    Google Scholar 

  39. K. A. Bronnikov, G. Clément, C. P. Constantinidis, and J. C. Fabris, Grav. Cosmol. 4, 128(1998).

    Google Scholar 

  40. O. B. Zaslavskii, Class. Quant. Grav. 19, 3783(2002).

    Google Scholar 

  41. S. N. Solodukhin, Phys. Rev. D 51, 609(1995).

    Google Scholar 

  42. N. Bocharova, K. Bronnikov, and V. Melnikov, Vestn. Mosk. Univ. Fiz. Astron. 6, 706(1970).

    Google Scholar 

  43. J. D. Bekenstein, Ann. Phys. (N.Y.) 82, 535(1974).

    Google Scholar 

  44. G. W. Gibbons, Nucl. Phys. B 207, 337(1982).

    Google Scholar 

  45. G. W. Gibbons and K. Maeda, Nucl. Phys. B 298, 741(1988).

    Google Scholar 

  46. D. Garfinkle, G. T. Horowitz, and A. Strominger, Phys. Rev. D 43, 3140(1991). Erratum 45, 3888(1992).

    Google Scholar 

  47. P. R. Anderson, W. A. Hiscock, and D. A. Samuel, Phys. Rev. D 51, 4337(1995).

    Google Scholar 

  48. J. Matyjasek, Phys. Rev. D 61, 124019(2000).

    Google Scholar 

  49. S. V. Sushkov, Phys. Rev. D 62, 064007(2000).

    Google Scholar 

  50. H. Koyama, Y. Nambu, and A. Tomimatsu, Mod. Phys. Lett. A 15, 815(2000).

    Google Scholar 

  51. D. V. Gal'tsov and J. P. S. Lemos, Class. Quant. Grav. 18, 1715(2001).

    Google Scholar 

  52. K. A. Bronnikov, Phys. Rev. D 64, 0604013(2001).

    Google Scholar 

  53. J. D. Bekenstein, Ann. Phys. (N.Y.) 91, 75(1975).

    Google Scholar 

  54. K. A. Bronnikov and Yu. N. Kireyev, Phys. Lett. A 67, 95(1978).

    Google Scholar 

  55. J. D. Bekenstein, “Black Holes: Classical Properties, Thermodynamics, and Heuristic Quantization,” gr-qc/9808028.

  56. G. T. Horowitz and S. F. Ross, Phys. Rev. D 56, 2180(1997).

    Google Scholar 

  57. G. T. Horowitz and S. F. Ross, Phys. Rev. D 57, 1098(1997).

    Google Scholar 

  58. O. B. Zaslavskii, Mod. Phys. Lett. A 17, 1775(2002).

    Google Scholar 

  59. E. Elizalde and S. D. Odintsov, Nucl. Phys. B 399, 581(1993).

    Google Scholar 

  60. T. Kloesch and T. Strobl, Class. Quant. Grav. 13, 965–984 (1996). Erratum-ibid. 14, 825(1997).

    Google Scholar 

  61. H. Pelzer and T. Strobl, Class. Quant. Grav. 15, 3803(1998).

    Google Scholar 

  62. E. Elizalde, P. Fosalba-Vela, S. Naftulin, and S. D. Odintsov, Phys. Lett. B 352, 235(1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaslavskii, O.B. Regular Self-Consistent Geometries with Infinite Quantum Backreaction in 2D Dilaton Gravity and Black Hole Thermodynamics: Unfamiliar Features of Familiar Models. Foundations of Physics 33, 1–35 (2003). https://doi.org/10.1023/A:1022837108018

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022837108018

Navigation