Skip to main content
Log in

Interacting Bosons at Finite Temperature: How Bogolubov Visited a Black Hole and Came Home Again

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The structure of the thermal equilibrium state of a weakly interacting Bose gas is of current interest. We calculate the density matrix of that state in two ways. The most effective method, in terms of yielding a simple, explicit answer, is to construct a generating function within the traditional framework of quantum statistical mechanics. The alternative method, arguably more interesting, is to construct the thermal state as a vector state in an artificial system with twice as many degrees of freedom. It is well known that this construction has an actual physical realization in the quantum thermodynamics of black holes, where the added degrees of freedom correspond to the second sheet of the Kruskal manifold and the thermal vector state is a state of the Unruh or the Hartle–Hawking type. What is unusual about the present work is that the Bogolubov transformation used to construct the thermal state combines in a rather symmetrical way with Bogolubov's original transformation of the same form, used to implement the interaction of the nonideal gas in linear approximation. In addition to providing a density matrix, the method makes it possible to calculate efficiently certain expectation values directly in terms of the thermal vector state of the doubled system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. D. Bekenstein, Phys. Rev. D 7, 2333(1973); 12, 3077(1975).

    Google Scholar 

  2. J. D. Bekenstein and A. Meisels, Phys. Rev. D 15, 2775(1977).

    Google Scholar 

  3. S. W. Hawking, Comm. Math. Phys. 43, 199(1975); Phys. Rev. D 13, 191(1976); Phys. Rev. D 14, 2460(1976).

    Google Scholar 

  4. B. S. DeWitt, Phys. Rep. 19, 295(1975). R. M. Wald, Comm. Math. Phys. 45, 9(1975). R. M. WaldPhys. Rev. D 13, 3176(1976). L. Parker, Phys. Rev. D 12, 1519(1975).

    Google Scholar 

  5. W. G. Unruh, Phys. Rev. D 14, 870(1976).

    Google Scholar 

  6. J. B. Hartle and S. W. Hawking, Phys. Rev. D 13, 2188(1976).

    Google Scholar 

  7. S. A. Fulling, J. Phys. A 10, 917(1977).

    Google Scholar 

  8. G. W. Gibbons and M. J. Perry, Phys. Rev. Lett. 36, 985(1976); Proc. Roy. Soc. A 358, 467(1978).

    Google Scholar 

  9. G. L. Sewell, Ann. Phys. (N.Y.) 141, 201(1982).

    Google Scholar 

  10. S. A. Fulling and S. N. M. Ruijsenaars, Phys. Rep. 152, 135(1987). B. S. Kay and R. M. Wald, Phys. Rep. 207, 49(1991).

    Google Scholar 

  11. R. Kubo, J. Phys. Soc. Japan 12, 570(1957). P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342(1959).

    Google Scholar 

  12. R. Haag, N. M. Hugenholtz, and M. Winnink, Comm. Math. Phys. 5, 215(1967).

    Google Scholar 

  13. L. Parker, Nature 261, 20(1976).

    Google Scholar 

  14. W. Israel, Phys. Lett. A 57, 107(1976).

    Google Scholar 

  15. H. Araki and E. J. Woods, J. Math. Phys. 4, 637(1963).

    Google Scholar 

  16. Y. Takahashi and H. Umezawa, Collective Phenom. 2, 55(1975). H. Umezawa, H. Matsumoto, and M. Tachiki, Thermo Field Dynamics and Condensed States (North-Holland, Amsterdam, 1982).

    Google Scholar 

  17. J. J. Bisognano and E. H. Wichmann, J. Math. Phys. 16, 985(1975); 17, 303(1976).

    Google Scholar 

  18. G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2738(1977).

    Google Scholar 

  19. N. N. Bogolubov, J. Phys. (USSR) 11, 23(1947).

    Google Scholar 

  20. N. N. Bogoliubov, Lectures on Quantum Statistics, Vol. 1 (Gordon & Breach, New York, 1967) (translation of Ukrainian original, 1949).

    Google Scholar 

  21. V. A. Zagrebnov and J.-B. Bru, Phys. Rep. 350, 291(2001).

    Google Scholar 

  22. V. V. Kocharovsky, Vl. V. Kocharovsky, and M. O. Scully, Phys. Rev. A 61, 053606(2000).

    Google Scholar 

  23. E. A. Cornell and C. E. Wieman, Rev. Mod. Phys. 74, 875(2002). W. Ketterle, Rev. Mod. Phys. 74, 1131(2002).

    Google Scholar 

  24. A. Brunello, F. Dalfovo, L. Pitaevski, and S. Stringari, Phys. Rev. Lett. 85, 4422(2000). J. M. Vogels, K. Xu, C. Raman, J. R. Abo-Shaeer, and W. Ketterle, Phys. Rev. Lett. 88, 060402(2002).

    Google Scholar 

  25. B.-G. Englert, S. A. Fulling, and M. D. Pilloff, Optics Comm. 208, 139(2002).

    Google Scholar 

  26. D. E. Knuth, The Art of Computer Programming, Vol. 1, 2nd edn. (Addison–Wesley, Reading, 1973), Sec. 1.2.6.

    Google Scholar 

  27. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1980), Sec. 8.96.

    Google Scholar 

  28. M. Petkovšek, H. S. Wilf, and D. Zeilberger, A=B (Peters, Wellesley, 1996).

    Google Scholar 

  29. M. A. Rashid and A. Mahmood, J. Phys. A 34, 8185(2001).

    Google Scholar 

  30. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fulling, S.A., Englert, BG. & Pilloff, M.D. Interacting Bosons at Finite Temperature: How Bogolubov Visited a Black Hole and Came Home Again. Foundations of Physics 33, 87–110 (2003). https://doi.org/10.1023/A:1022819825765

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022819825765

Navigation