Advertisement

Journal of Assisted Reproduction and Genetics

, Volume 15, Issue 8, pp 485–495 | Cite as

Laser Scanning Confocal Imaging of Abnormal or Arrested Human Preimplantation Embryos

  • Rachel Levy
  • Mehdi Benchaib
  • Helene Cordonier
  • Catherine Souchier
  • Jean-Francois Guerin
Article

Abstract

Purpose: The improved resolution and optical sectioning of a confocal microscope make it an ideal instrument for extracting three-dimensional information, especially from extended biological specimens such as human embryos. The staining of actin together with chromatin allowed us to specify the architecture of the embryo and the appearance of the nucleus.

Methods: F-Actin and chromatin distributions were visualized using laser scanning confocal microscopy in “fresh” and “cryopreserved” human preimplantation embryos obtained by in vitro fertilization.

Results: The current study revealed a high rate of multinucleation in arrested or poor-quality embryos (89%, in grade IV embryos).

Conclusions: Confocal microscopy revealed high levels of multinucleated blastomeres, suggesting that the probable cause of arrested development in these embryos was due to multinucleation of blastomeres.

laser scanning confocal imaging human preimplantation embryos F-actin chromatin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Pawley JB: Handbook of Biological Confocal Microscopy. New York, Plenum Press, 1995Google Scholar
  2. 2.
    Paddock SW: Applications of laser scanning confocal microscopy in developmental biology. Bioessays 1994;16:357–364Google Scholar
  3. 3.
    White JG, Amos WB, Fordham M: An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J Cell Biol 1987;105:41–48Google Scholar
  4. 4.
    Hardy K, Winston RLM, Handyside AH: Binucleate blastomeres in preimplantation human embryos in vitro: Failure of cytokinesis during early cleavage. J Reprod Fertil 1993;98:549–558Google Scholar
  5. 5.
    Hardy K, Handyside AH, Winston RML: The human blastocyst: Cell number, death and allocation during late preimplantation development. In Vitro Dev 1989;107:597–604Google Scholar
  6. 6.
    Wulf E, Deboben A, Bautz FA, Faulstich H, Wieland T: Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proc Natl Acad Sci USA 76;1979:4498–4502Google Scholar
  7. 7.
    Von Dassow G, Schubiger G: How an actin network might cause fountain streaming and nuclear migration in the syncytial Drosophila embryo. J Cell Biol 1994;127:1637–1653Google Scholar
  8. 8.
    Segal S, Casper RF: Progesterone supplementation increases luteal phase endometrial thickness and estradiol levels in in vitro fertilization. Hum Reprod 1992;7: 1210–1213Google Scholar
  9. 9.
    Dawson KJ, Margara RM, Hillier SG, Packham D, Winston N, Winston RML: Factors affecting success at the time of embryo transfer. Hum Reprod 1987;2(Suppl 1):39Google Scholar
  10. 10.
    Menezo Y, Guerin JF, Czyba JC: Improvement of human early embryo development in vitro by coculture on monolayers of Vero cells. Biol Reprod 1990;42: 301–306Google Scholar
  11. 11.
    Testart J, Lasalle B, Belaisch-Allart J, Forman R, Hazout A, Volante M, Frydman R: Human embryo viability related to freezing and thawing procedures. Am J Obstet Gynecol 1987;157:168–171Google Scholar
  12. 12.
    Sathananthan AH, Wood C, Leeton JF: Ultrastructural evaluation of 8–16 cell human embryos cultured in vitro. Micron 1982;13:193–203Google Scholar
  13. 13.
    Lopata A, Nayudu P, Jones G, Abramczuk J: The quality of human embryos obtained by in vitro fertilization. In Human In Vitro Fertilization, J Testart, R Frydman (eds). Amsterdam, Elsevier, 1985, pp 171–185Google Scholar
  14. 14.
    Van Blerkom J, Henry G, Porreco R: Preimplantation human embryonic development from polypronuclear eggs after in vitro fertilization. Fertil Steril 1984;41: 686–695Google Scholar
  15. 15.
    Trounson A, Sathananthan AH: The application of electron microscopy in the evaluation of two-to four-cell human embryos cultured in vitro for embryo transfer. J In Vitro Fert Embryo Transfer 1984;1:153–165Google Scholar
  16. 16.
    Plachot M, Mandelbaum J, Junca AM, De Grouchy J, Cohen J, Salat-Baroux J, Da Lage C: Morphologic, cytologic and cytogenetic studies of human embryos obtained by IVF. In In Vitro Fertilization. Proceedings of the Twelfth World Congress of Fertility and Sterility (Vol 2), SS Ratnam, ES Teoh (eds). Lancs, UK, Parthenon, 1986, pp 61–65Google Scholar
  17. 17.
    Tesarik J, Kopecny V, Plachot M, Mandelbaum J: Ultrastructural and autoradiographic observations on multinucleated blastomeres of human cleaving embryos obtained by in-vitro fertilization. Hum Reprod 1987;2:127–136Google Scholar
  18. 18.
    Winston NJ, Braude PR, Pickering SJ, George MA, Cant A, Currie J, Johnson MH: The incidence of abnormal morphology and nucleocytoplasmic ratios in 2-, 3-and 5-day human preembryos. Hum Reprod 1991;6:17–24Google Scholar
  19. 19.
    Balakier H, Casper RFJ: A morphologic study of unfertilized oocytes and abnormal embryos in human in-vitro fertilization. J In Vitro Fert Embryo Transfer 1991;8:73–79Google Scholar
  20. 20.
    Pickering SJ, Taylor A, Johnson MH, Braude PR: An analysis of multinucleated blastomere formation in human embryos. Mol Hum Reprod 1995:1 (see Hum Reprod 1995;10:1912–1922)Google Scholar
  21. 21.
    Wojcik C, Guerin JF, Pinatel MC, Bied V, Boulieu D, Czyba JC: Morphological and cytogenetic observations of unfertilized human oocytes and abnormal embryos obtained after ovarian stimulation with pure follicle stimulating hormone following pituitary desensitization. Hum Reprod 1995;10:2617–2622Google Scholar
  22. 22.
    Hardy K, Warner A, Winston RML, Becker DL: Expression of intercellular junctions during preimplantation development of the human embryo. Mol Hum Reprod 1996;2:621–632Google Scholar
  23. 23.
    Balakier H, Cadesky K: The frequency and developmental capability of human embryos containing multinucleated blastomeres. Hum Reprod 1997;12:800–804Google Scholar
  24. 24.
    Simerly C, Wu GJ, Zoran S, Ord T, Rawlins R, Jones J, Navara C, Gerrity M, Rinehart J, Binor Z, Asch R, Schatten G: The paternal inheritance of the centrosome, the cell's microtubule—organizing center, in humans, and the implications for infertility. Nature Med 1995;1:47–53Google Scholar
  25. 25.
    Brakenhoff GJ, van der Voort HTM, van Spronsen EA, Nanninga N: Three-dimensional imaging in fluorescence by confocal scanning microscopy. J Microsc 1989;153:151–159Google Scholar
  26. 26.
    Kligman I, Benadiva C, Alikani M, Munné S: The presence of multinucleated blastomeres in human embryos is correlated with chromosomal abnormalities. Hum Reprod 1996;11:1492–1498Google Scholar
  27. 27.
    Mottla GL, Adelman MR, Hall JL, Gindoff PR, Stillman RJ, Johnson KE: Lineage tracing demonstrates that blastomeres of early cleavage-stage human preembryos contribute to both trophectoderm and inner cell mass. Hum Reprod 1995;10:384–391Google Scholar
  28. 28.
    Mandelbaum J: La congélation des embryons humains. Contracept Fert Sex 1990;18:341–353Google Scholar
  29. 29.
    Kondo I, Suganuma N, Ando T, Asada Y, Furuhashi M, Tomoda Y: Clinical factors for successful cryopreserved-thawed embryo transfer. J Assist Reprod Genet 1996;13:201–206Google Scholar
  30. 30.
    Van den Abbeel E, Camus M, Van Waesberghe L, Devroey P, Van Steirteghem AC: Viability of partially damaged human embryos after cryopreservation. Hum Reprod 1997;12:2006–2010Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Rachel Levy
    • 1
  • Mehdi Benchaib
    • 1
    • 2
  • Helene Cordonier
    • 1
  • Catherine Souchier
    • 2
  • Jean-Francois Guerin
    • 1
  1. 1.Laboratoire de Biologie de la Reproduction et du DéveloppementHôpital Edouard HerriotLyon Cedex 03France
  2. 2.Centre Commun de QuantimétrieUniversité Claude BernardLyon Cedex 08France

Personalised recommendations