Skip to main content
Log in

Detachment factors for enhanced carrier to carrier transfer of CHO cell lines on macroporous microcarriers

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

In this publication different detachment factors were tested for enhancing carrier to carrier transfer for scale-up of macroporous microcarrier based bioprocesses. Two Chinese hamster ovary cell lines, CHO-K1 and a genetically engineered CHO-K1 derived cell line (CHO-MPS), producing recombinant human Arylsulfatase B, were examined. The cells were grown on Cytoline 1microcarriers (Amersham Biosciences, Uppsala, Sweden) in protein-free and chemically defined medium respectively. Fully colonised microcarriers were used at passage ratios of approximately 1:10 for carrier to carrier transfer experiments. To accelerate the colonisation of the non-colonised, freshly added microcarriers the detachment reagents trypsin, papain, Accutase™ (PAA, Linz, Austria), heparin and dextransulphate were used. Both cell lines showed good results with trypsin, Accutase and dextransulphate (Amersham Biosciences, Uppsala, Sweden), while papain failed to enhance carrier to carrier transfer in comparison to the non-treated reference. The maximum growth rate of cells on microcarriers with 2% dextransulphate in the medium was 0.25 ± 0.02d−1 and 0.27 ± 0.03d−1 for the CHO-MPS and CHO-K1, respectively. TheCHO-K1 grew best after detachment with trypsin (μ = 0.36 ± 0.03d−1). This indicates, that one of the key parameters for carrier to carrier transfer is the uniform distribution of cells on the individual carriers during the initial phase. When this distribution can be improved, growth rate increases, resulting in a faster and more stable process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amano H., Kurosaka R., Ema M. and Ogawa Y. 1996. Trypsin promotes C6 glioma cell proliferation in serum-and growth factor-free medium. Neurosci. Res. 25: 203-208.

    Article  CAS  Google Scholar 

  • Barabino G.A., Liu X.D., Ewenstein B.M. and Kaul D.K. 1999. Anionic polysaccharides inhibit adhesion of sickle erythrocytes to the vascular endothelium and result in improved hemodynamic behavior. Blood 93: 1422-1429.

    CAS  Google Scholar 

  • Dee K.U., Shuler M.L. and Wood H.A. 1997. Inducing single-cell suspension of BTI-TN5BI-4 insect cells: I. The use of sulfated polyanions to prevent cell aggregation and enhance recombinant protein production. Biotechnol. Bioeng. 54: 191-205.

    Article  CAS  Google Scholar 

  • Dürrschmid M., Landauer K., Simic G., Klug H., Müller D., Keijzer T. et al. 2001. Comparison of Fluidised Bed and Ultrasonic Cell-Retention Systems for High Cell Density Mammalian Cell Culture. In: Lindner-Olsson E., Chatzissavidou N. and Liillau E. (eds), Animal Cell Technology: From Target to Market. Kluwer Academic Press, Dordrecht, NL, pp. 382-385.

    Google Scholar 

  • Facius D. and Lohster R. 1999. Multiple-Product Isolation from Multicomplex Mixtures in a Single Operating Unit. Genetic Engineering News 19: 47-51.

    Google Scholar 

  • Goldman M.H., James D.C., Rendall M., Ison A.P, Hoare M. and Bull A.T. 1998. Monitoring recombinant human interferongamma N-glycosylation during perfused fluidized-bed and stirred-tank batch culture of CHO cells. Biotechnol. Bioeng. 60: 596-607.

    Article  CAS  Google Scholar 

  • Hohenwarter O. 1990. Humane Endothelzellen: Primärkultur und Immortalisierung, University of Agricultural Sciences, Vienna, A.

    Google Scholar 

  • Hu X., Xiao C., Huang Z., Guo Z., Zhang Z. and Li Z. 2000. Pilot production of u-PA with porous microcarrier cell culture. Cytotechnology 33: 13-19.

    Article  CAS  Google Scholar 

  • Jayme D.W. and Smith S.R. 2000. Media formulation options and manufacturing process controls to safeguard against introduction of animal origin contaminants in animal cell culture. Cytotechnology 33: 27-36.

    Article  Google Scholar 

  • Jozefowicz M. and Jozefonvicz J. 1997. Randomness and biospecificity: random copolymers are capable of biospecific molecular recognition in living systems. Biomaterials 18: 1633-1644.

    Article  CAS  Google Scholar 

  • Kong D., Cardak S., Chen M., Gentz R. and Zhang J. 1999a. High cell density and productivity culture of Chineses hamster ovary cells in a fluidized bed bioreactor. Cytotechnology 29: 215-220.

    Article  Google Scholar 

  • Kong D., Chen M., Gentz R. and Zhang J. 1999b. Cell growth and protein formation on various microcarriers. Cytotechnology 29: 149-156.

    CAS  Google Scholar 

  • Logeart-Avramoglou D. and Jozefonvicz J. 1999. Carboxmethyl Benzylamide Sulfonate Dextrans (CMDBS), A Family of Biospecific Polymers Endowed with Numerous Biological Properties: A Rewiew. J. Biomed. Mater. Res. 48: 578-590.

    Article  CAS  Google Scholar 

  • Maiga-Revel O., Chaubet F. and Jozefonvicz J. 1997. New investigations on heparin-like derivatized dextrans: CMDBS, synergistic role of benzylamide and sulfate substituents in anticoagulant activity. Carbohydr. Polym. 32: 89-93.

    Article  CAS  Google Scholar 

  • Merten O.-W. 2000. Cell Detachment. In: Spier R.E. (ed.), Encyclopedia of Cell Technology. John Wiley & Sons, New York, USA, pp. 351-365.

    Google Scholar 

  • Merten O.-W., Dante J., Noguiez-Hellin P., Laune S., Klatzmann D. and Saizmann J.-L. 1997. New process for cell detachment: use of heparine. In: Carrondo M.J.T., Griffiths B. and Moreira L.P. (eds), Animal Cell Technology. From vaccines to genetic medicine. Kluwer Academic Publishers, Dordrecht, NL, pp. 343-348.

    Google Scholar 

  • Merten O.-W, Kierluff J.V., Castignolles N. and Perrin P. 1994. Evaluation of the new serum-free medium (MDSS2) for the production of different biologicals: Use of various cell lines. Cytotechnology 14: 47-59.

    Article  CAS  Google Scholar 

  • Ohlson S., Branscomb J. and Nilsson K. 1994. Bead-tobead transfer of Chinese hamster ovary cells using macroporous microcarriers. Cytotechnology 14: 67-80.

    Article  CAS  Google Scholar 

  • van der Velden-de Groot C.A.M. 1995. Micorcarrier technology, present status and perspective. Cytotechnology 18: 51-56.

    Article  CAS  Google Scholar 

  • Voigt A. and Zinti F. 1999. Hybridoma cell growth and antineuroblastoma monoclonal antibody production in spinner flasks using a protein-free medium with microcarriers. J. Biotechnol. 68: 213-226.

    Article  CAS  Google Scholar 

  • Xiao C., Huang Z., Li W, Hu X., Qu W, Gao L. et al. 1999. High density and scale-up cultivation of recombinant CHO cell line and hybridomas with porous microcarrier Cytopore. Cytotechnology 30:143-147.

    Article  CAS  Google Scholar 

  • Zanghi J.A., Renner W.A., Bailey J.E. and Fussenegger M. 2000. The Growth Factor Inhibitor Suramin Reduces Apoptosis and Cell Aggregation in Protein-Free CHO Cell Batch Cultures. Biotechnol. Prog. 16: 319-325.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landauer, K., Dürrschmid, M., Klug, H. et al. Detachment factors for enhanced carrier to carrier transfer of CHO cell lines on macroporous microcarriers. Cytotechnology 39, 37–45 (2002). https://doi.org/10.1023/A:1022455525323

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022455525323

Navigation