Foundations of Physics

, Volume 32, Issue 12, pp 1809–1849 | Cite as

Black Holes as Atoms

  • Jarmo Mäkelä


Stationary spacetimes containing a black hole have several properties akin to those of atoms. For instance, such spacetimes have only three classical degrees of freedom, or observables, which may be taken to be the mass, the angular momentum, and the electric charge of the hole. There are several arguments supporting a proposal originally made by Bekenstein that quantization of these classical degrees of freedom gives an equal spacing for the horizon area spectrum of black holes. We review some of these arguments and introduce a specific Hamiltonian quantum theory of black holes. Our Hamiltonian quantum theory gives, among other things, a discrete spectrum for the classical observables, and it produces an area spectrum which is closely related to Bekenstein's proposal. We also present a foamlike model of horizons of spacetime. In our model spacetime horizon consists of microscopic Schwarzschild black holes. Applying our Hamiltonian approach to this model we find that the entropy of any horizon is one quarter of its area.

black holes atoms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Bekenstein, Lett. Nuovo Cim. 11, 467 (1974).Google Scholar
  2. 2.
    J. D. Bekenstein and V. F. Mukhanov, Phys. Lett. B 360, 7–12 (1995).Google Scholar
  3. 3.
    See, for example, P. O Mazur, Phys. Rev. Lett. 57, 929 (1987); M. Maggiore, Nucl. Phys. B 429, 205–208 (1994); C. O. Lousto, Phys. Rev. D 51, 1773 (1995); Y. Peleg, Phys. Lett. B vn356, 462 (1995); A. Barvinsky and G. Kunstatter, Phys. Lett. B 389, 231–237 (1996); H. A. Kastrup, Phys. Lett. B 389, 75–80 (1996); S. Hod, Phys. Rev. Lett. 81, 4293 (1998); S. Hod, Gen. Rel. Grav. 31, 1639 (1999); H. A. Kastrup, Ann. Phys. (Leipzig) vn 9, 503–522 (2000); M. Bojowald and H. A. Kastrup, Class. Quant. Grav 17, 3009–3043 (2000); J. D. Bekenstein: “Quantum Black Holes as Atoms” (Plenary Talk, at VII Marcel Grossmann Meeting on General Relativity, June 1997), gr-qc/9710076; J. D. Bekenstein, “The Case for Discrete Energy Levels of a Black Hole” (Invited talk at “2001: A Spacetime Odyssey,” inaugural conference of the Michigan Center for Theoretical Physics, May 22–25, 2001, to appear in the proceedings published by World Scientific), hep-th/0107045; A. Barvinsky, S. Das, and G. Kunstatter, Phys. Lett. B 517, 415–420 (2001); C. Vaz, Phys. Rev. D 61, 064017 (2000).Google Scholar
  4. 4.
    J. Louko and J. Mäkelä, Phys. Rev. D 54, 4982–4996 (1996).Google Scholar
  5. 5.
    J. Mäkelä, Phys. Lett. B 390, 115–118 (1997).Google Scholar
  6. 6.
    J. Mäkelä and P. Repo, Phys. Rev. D 57, 4899–4916 (1998).Google Scholar
  7. 7.
    J. Mäkelä, P. Repo, M. Luomajoki, and J. Piilonen, Phys. Rev. D 64, 024018 (2001).Google Scholar
  8. 8.
    J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).Google Scholar
  9. 9.
    H. Goldstein, Classical Mechanics, 2nd edn. (Addison–Wesley, Reading, MA, 1980).Google Scholar
  10. 10.
    J. D. Bekenstein, “Disturbing the black hole,” in Black Holes, Gravitational Radiation and the Universe (Kluwer Academic, Dortrecht, 1999).Google Scholar
  11. 11.
    S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).Google Scholar
  12. 12.
    See, for example, I. D. Novikov and V. P. Frolov, Physics of Black Holes (Kluwer Academic, Dortrecht, 1989).Google Scholar
  13. 13.
    D. N. Page, Phys. Rev. D 13, 198 (1976); 14, 3260 (1976); 16, 2402 (1977).Google Scholar
  14. 14.
    T. Regge and C. Teitelboim, Ann. Phys. 88, 286–318 (1974).Google Scholar
  15. 15.
    J. Louko and S. N. Winters-Hilt, Phys. Rev. D 54, 2647–2663 (1996).Google Scholar
  16. 16.
    K. Kuchar, Phys. Rev. D 50, 3961–3981 (1994).Google Scholar
  17. 17.
    See, for example, R. M. Wald, General Relativity (University of Chicago Press, Chicago, 1984)Google Scholar
  18. 18.
    See, for example, A. Ashtekar, J. Baez, A. Corichi, and K. Krasnov, Phys. Rev. Lett. 80, 904–907 (1998).Google Scholar
  19. 19.
    R. Garattini, Phys. Lett. B 459, 461–467 (1999).Google Scholar
  20. 20.
    R. Garattini, Int. J. Mod. Phys. D 4, 653 (2002).Google Scholar
  21. 21.
    See, for example, L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1, 3rd edn. (Butterworth-Heinemann, Oxford, 1999).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Jarmo Mäkelä
    • 1
  1. 1.Department of PhysicsUniversity of JyväskyläJyväskyläFinland

Personalised recommendations