Advertisement

Foundations of Physics

, Volume 32, Issue 12, pp 1903–1942 | Cite as

Do Neutron Star Gravitational Waves Carry Superfluid Imprints?

  • G. L. Comer
Article

Abstract

Isolated neutron stars undergoing non-radial oscillations are expected to emit gravitational waves in the kilohertz frequency range. To date, radio astronomers have located about 1,300 pulsars, and can estimate that there are about 2×108 neutron stars in the galaxy. Many of these are surely old and cold enough that their interiors will contain matter in the superfluid or superconducting state. In fact, the so-called glitch phenomenon in pulsars (a sudden spin-up of the pulsar's crust) is best described by assuming the presence of superfluid neutrons and superconducting protons in the inner crusts and cores of the pulsars. Recently there has been much progress on modelling the dynamics of superfluid neutron stars in both the Newtonian and general relativistic regimes. We will discuss some of the main results of this recent work, perhaps the most important being that superfluidity should affect the gravitational waves from neutron stars (emitted, for instance, during a glitch) by modifying both the rotational properties of the background star and the modes of oscillation of the perturbed configuration. Finally, we present an analysis of the so-called zero-frequency subspace (i.e., the space of time-independent perturbations) and determine that it is spanned by two sets of polar (or spheroidal) and two sets of axial (or toroidal) degenerate perturbations for the general relativistic system. As in the Newtonian case, the polar perturbations are the g-modes which are missing from the pulsation spectrum of a non-rotating configuration, and the axial perturbations should lead to two sets of r-modes when the degeneracy of the frequencies is broken by having the background rotate.

neutron stars superfluidity gravitational waves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    D. R. Lorimer, “Binary and millisecond pulsars at the new millenium,” Living Reviews. Relativity 4, 5 (2001). [Online article]: cited on 15 Aug 2001 http://www.livingreviews. org/Articles/Volume4/2001-5lorimer/.Google Scholar
  2. 2.
    U. Lombardo, in Nuclear Methods and Nuclear Equations of State, M. Baldo, ed. (World Scientific, Singapore, 1999), pp. 458–510.Google Scholar
  3. 3.
    U. Lombardo and H.-J. Schulze, preprint LANL archive astro-ph/0012209.Google Scholar
  4. 4.
    V. Radhakrishnan and R. N. Manchester, Nature 244, 228 (1969).Google Scholar
  5. 5.
    A. G. Lyne, in Pulsars as Physics Laboratories, R. D. Blandford, A. Hewish, A. G. Lyne, and L. Mestel, eds. (Oxford University Press, New York, 1993).Google Scholar
  6. 6.
    P. E. Reichley and G. S. Downs, Nature 222, 229 (1969).Google Scholar
  7. 7.
    G. Baym, C. Pethick, D. Pines, and M. Ruderman, Nature 224, 872 (1969).Google Scholar
  8. 8.
    P. W. Anderson and N. Itoh, Nature 256, 25 (1975).Google Scholar
  9. 9.
    M. A. Alpar, P. W. Anderson, D. Pines, and J. Shaham, Ap. J. 276, 325 (1984).Google Scholar
  10. 10.
    M. A. Alpar, P. W. Anderson, D. Pines, and J. Shaham, Ap. J. 278, 791 (1984).Google Scholar
  11. 11.
    J. S. Tsakadze and S. J. Tsakadze, J. Low Temp. Phys. 39, 649 (1980).Google Scholar
  12. 12.
    D. R. Tilley and J. Tilley, Superfluidity and Superconductivity, 2nd edn. (Adam Hilger, Bristol, 1986).Google Scholar
  13. 13.
    D. L. Goodstein, States of Matter (Dover, New York, 1985).Google Scholar
  14. 14.
    J. A. Sauls, in Timing Neutron Stars, H. Ögelman and E. P. J. van den Heuvel, eds. (Kluwer Academic, Dordrecht, 1989), pp. 457–490.Google Scholar
  15. 15.
    A. B. Migdal, Nucl. Phys. 13, 655 (1959).Google Scholar
  16. 16.
    M. Hoffberg, A. E. Glassgold, R. W. Richardson, and M. Ruderman, Phys. Rev. Lett. 24, 175 (1970).Google Scholar
  17. 17.
    M. Alpar, S. A. Langer, and J. A. Sauls, Ap. J. 282, 533 (1984).Google Scholar
  18. 18.
    M. A. Alpar and J. A. Sauls, Ap. J. 327, 723 (1988).Google Scholar
  19. 19.
    A. F. Andreev and E. P. Bashkin, Sov. Phys. JETP 42(1), 164 (1975).Google Scholar
  20. 20.
    G. A. Vardanyan and D. M. Sedrakian, Soviet Physics-JETP 54, 919 (1981).Google Scholar
  21. 21.
    G. Mendell and L. Lindblom, Ann. Phys. 205, 110 (1991).Google Scholar
  22. 22.
    G. Mendell, Ap. J. 380, 515 (1991); 530 (1991).Google Scholar
  23. 23.
    L. Lindblom and G. Mendell, Ap. J. 421, 689 (1994).Google Scholar
  24. 24.
    L. Lindblom and G. Mendell, Ap. J. 444, 804 (1995).Google Scholar
  25. 25.
    R. Prix, in preparation (2002).Google Scholar
  26. 26.
    B. Carter, in A Random Walk in General Relativity and Cosmology, N. Dadhich, J. Krishna Rao, J. V. Narlikar, and C. V. Vishveshwar, eds. (IAGRG, 1985), pp. 48.Google Scholar
  27. 27.
    B. Carter, in Lecture Notes in Mathematics 1385: Relativistic Fluid Dynamics, A. Anile and Y. Choquet-Bruhat (Springer, Heidelberg, 1989), pp. 1–64.Google Scholar
  28. 28.
    G. L. Comer and D. Langlois, Class. and Quant. Grav. 10, 2317 (1993).Google Scholar
  29. 29.
    G. L. Comer and D. Langlois, Class. and Quant. Grav. 11, 709 (1994).Google Scholar
  30. 30.
    B. Carter and D. Langlois, Phys. Rev. D 51, 5855 (1995).Google Scholar
  31. 31.
    B. Carter and D. Langlois, Nucl. Phys. B 454, 402 (1998).Google Scholar
  32. 32.
    B. Carter and D. Langlois, Nucl. Phys. B 531, 478 (1998).Google Scholar
  33. 33.
    D. Langlois, A. Sedrakian, and B. Carter, Mon. Not. R. Astron. Soc. 297, 1189 (1998).Google Scholar
  34. 34.
    B. Carter, D. Langlois, and D. M. Sedrakian, Astron. Astrophys. 361, 795 (2000).Google Scholar
  35. 35.
    R. Prix, Phys. Rev. D 62, 103005 (2000).Google Scholar
  36. 36.
    N. Andersson, G. L. Comer, and D. Langlois, Phys. Rev. D 66, 104002 (2002); also available as preprint LANL archive gr-qc/0203039.Google Scholar
  37. 37.
    N. Andersson, Ap. J. 502, 708 (1998).Google Scholar
  38. 38.
    J. L. Friedman and S. M. Morsink, Ap. J. 502, 714 (1998).Google Scholar
  39. 39.
    S. Chandrasekhar, Phys. Rev. Lett. 24, 611 (1970).Google Scholar
  40. 40.
    J. L. Friedman and B. F. Schutz, Ap. J. 221, 937 (1978); 222, 281 (1978).Google Scholar
  41. 41.
    J. L. Friedman, Commun. Math. Phys. 62, 247 1978.Google Scholar
  42. 42.
    L. Lindblom, B. Owen, and S. M. Morsink, Phys. Rev. Lett. 80, 4843 (1998).Google Scholar
  43. 43.
    B. J. Owen, L. Lindblom, C. Cutler, B. F. Schutz, A. Vecchio, and N. Andersson, Phys. Rev. D 58, 084020 (1998).Google Scholar
  44. 44.
    N. Andersson, K. D. Kokkotas, and B. F. Schutz, Ap. J. 510, 846 (1999).Google Scholar
  45. 45.
    L. Lindblom and G. Mendell, Phys. Rev. D 61, 104003 (2000).Google Scholar
  46. 46.
    N. Andersson and G. L. Comer, Mon. Not. R. Astron. Soc. 328, 1129 (2001).Google Scholar
  47. 47.
    R. I. Epstein, Ap. J. 333, 880 (1988).Google Scholar
  48. 48.
    N. Andersson and G. L. Comer, Class. and Quant. Grav. 18, 969 (2001).Google Scholar
  49. 49.
    R. Prix, G. L. Comer, and N. Andersson, Astron. Astrophys. 381, 178 (2002).Google Scholar
  50. 50.
    P. Haensel, Astron. Astrophys. 262, 131 (1992).Google Scholar
  51. 52.
    G. L. Comer, D. Langlois, and L. M. Lin, Phys. Rev. D 60, 104025 (1999).Google Scholar
  52. 53.
    S. J. Putterman, Superfluid Hydrodynamics (North-Holland, Amsterdam, 1974).Google Scholar
  53. 54.
    A. Akmal, V. R. Panharipande, and D. G. Ravenhall, Phys. Rev. C 58, 1804 (1998).Google Scholar
  54. 55.
    D. Pines and P. Nozières, The Theory of Quantum Liquids, Vol. 1 (Benjamin, New York, 1966).Google Scholar
  55. 56.
    M. Borumand, R. Joynt, and W. Kluźniak, Phys. Rev. C 54, 2745 (1996).Google Scholar
  56. 57.
    O. Sjöberg, Nucl. Phys. A 265, 511 (1976).Google Scholar
  57. 58.
    B. Carter, J. Math. Phys. 10, 70 (1969).Google Scholar
  58. 59.
    B. Carter, Comm. Math. Phys. 17, 233 (1970).Google Scholar
  59. 60.
    S. Bonazzola, E. Gourgoulhon, M. Salgado, and J.-A. Marck, Astron. Astrophys. 278, 421 (1993).Google Scholar
  60. 61.
    N. Stergioulas, “Rotating Stars in Relativity,” Living Reviews. Relativity 1 (1998). 8. [Online article]: cited on 15 Aug 2001 http://www.livingreviews.org/Articles/Volumel/ 1998-8stergio/.Google Scholar
  61. 62.
    E. Gourgoulhon, P. Haensel, R. Livine, E. Paluch, S. Bonazzola, and J.-A. Marck, Astron. Astrophys. 349, 851 (1999).Google Scholar
  62. 63.
    R. Prix, Astron. Astrophys. 352, 623 (1999).Google Scholar
  63. 64.
    J. B. Hartle, Ap. J. 150, 1005 (1967).Google Scholar
  64. 65.
    J. B. Hartle and K. S. Thorne, Ap. J. 163, 807 (1968).Google Scholar
  65. 66.
    S. Chandrasekar, Mon. Not. R. Astron. Soc. 93, 390 (1933).Google Scholar
  66. 67.
    E. A. Milne, Mon. Not. R. Astron. Soc. 83, 118 (1923).Google Scholar
  67. 68.
    M. Prakash, J. M. Lattimer, and T. L. Ainsworth, Phys. Rev. Lett. 61, 2518 (1988).Google Scholar
  68. 69.
    J. Font, T. Goodale, S. Iyer, M. Miller, L. Rezolla, E. Seidel, N. Stergioulas, W. Suen, and M. Tobias, Phys. Rev. D 65, 084024 (2002).Google Scholar
  69. 70.
    K. H. Lockitch and J. L. Friedman, Ap. J. 521, 764 (1999).Google Scholar
  70. 71.
    K. H. Lockitch, N. Andersson, and J. L. Friedman, Phys. Rev. D 63, 024019 (2001).Google Scholar
  71. 72.
    U. Lee, Astron. Astrophys. 303, 515 (1995).Google Scholar
  72. 73.
    A. Sedrakian and I. Wasserman, Phys. Rev. D 63, 024016 (2000).Google Scholar
  73. 74.
    R. Prix and M. Rieutord, preprint LANL archive astro-ph/0204520.Google Scholar
  74. 75.
    P. N. McDermott, H. M. Van Horn, and C. J. Hansen, Ap. J. 325, 725 (1988).Google Scholar
  75. 76.
    A. Reisenegger and P. Goldreich, Ap. J. 395, 240 (1992).Google Scholar
  76. 77.
    W. Unno, Y. Osaki, H. Ando, and H. Shibahashi, Nonradial Oscillations of Stars (University of Tokyo Press, 1989).Google Scholar
  77. 78.
    N. Andersson and G. L. Comer, Phys. Rev. Lett. 24, 241101 (2001).Google Scholar
  78. 79.
    V. V. Khodel, V. A. Khodel, and J. W. Clark, Nuc. Phys. A 679, 827 (2001).Google Scholar
  79. 80.
    T. Regge and J. A. Wheeler, Phys. Rev. 108, 1063 (1957).Google Scholar
  80. 81.
    S. Chandrasekhar, Ap. J. 140, 417 (1964).Google Scholar
  81. 82.
    K. S. Thorne and A. Campolattaro, Ap. J. 149, 591 (1967).Google Scholar
  82. 83.
    R. Price and K. S. Thorne, Ap. J. 155, 163 (1969).Google Scholar
  83. 84.
    K. S. Thorne, Ap. J. 158, 1 (1969).Google Scholar
  84. 85.
    K. S. Thorne, Ap. J. 158, 997 (1969).Google Scholar
  85. 86.
    A. Campolattaro and K. S. Thorne, Ap. J. 159, 847 (1970).Google Scholar
  86. 87.
    L. Lindblom and S. L. Detweiler, Ap. J. Supplement Series 53, 73 (1983).Google Scholar
  87. 88.
    S. L. Detweiler and L. Lindblom, Ap. J. 292, 12 (1985).Google Scholar
  88. 89.
    K. D. Kokkotas and B. F. Schutz, Mon. Not. R. Astron. Soc. 268, 119 (1992).Google Scholar
  89. 90.
    N. Andersson, K. D. Kokkotas, and B. F. Schutz, Mon. Not. R. Astron. Soc. 280, 1230 (1996).Google Scholar
  90. 91.
    Proceedings of the SOHO 10/GONG 2000 Workshop: Helio-and asteroseismology at the dawn of the millennium, A. Wilson, ed. (ESA Publications Division, 2001).Google Scholar
  91. 92.
    N. Andersson and K. D. Kokkotas, Phys. Rev. Lett. 77, 4134 (1996).Google Scholar
  92. 93.
    N. Andersson and K. D. Kokkotas, Mon. Not. R. Astron. Soc. 299, 1059 (1998).Google Scholar
  93. 94.
    K. D. Kokkotas, T. Apostolatos, and N. Andersson, Mon. Not. R. Astron. Soc. 302, 307 (2001).Google Scholar
  94. 95.
    P. R. Brady, T. Creighton, C. Cutler, and B. F. Schutz, Phys. Rev. D 57, 2101 (1998).Google Scholar
  95. 97.
    L. M. Franco, B. Link, and R. I. Epstein, Ap. J. 543, 987 (2000).Google Scholar
  96. 98.
    D. Hartmann, K. Hurley, and M. Niel, Ap. J. 387, 622 (1992).Google Scholar
  97. 99.
    I. H. Stairs, A. G. Lyne, and S. L. Shemar, Nature 406, 484 (2000). 1942 Comer Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • G. L. Comer
    • 1
  1. 1.Department of PhysicsSaint Louis UniversitySaint Louis

Personalised recommendations