Advertisement

Foundations of Physics

, Volume 32, Issue 12, pp 1851–1862 | Cite as

Discrete Spectra of Charged Black Holes

  • Andrei Barvinsky
  • Saurya Das
  • Gabor Kunstatter
Article

Abstract

Bekenstein proposed that the spectrum of horizon area of quantized black holes must be discrete and uniformly spaced. We examine this proposal in the context of spherically symmetric charged black holes in a general class of gravity theories. By imposing suitable boundary conditions on the reduced phase space of the theory to incorporate the thermodynamic properties of these black holes and then performing a simplifying canonical transformation, we are able to quantize the system exactly. The resulting spectra of horizon area, as well as that of charge are indeed discrete. Within this quantization scheme, near-extremal black holes (of any mass) turn out to be highly quantum objects, whereas extremal black holes do not appear in the spectrum, a result that is consistent with the postulated third law of black hole thermodynamics.

quantum blackholes quantum gravity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973). S. W. Hawking, Phys. Rev. D 13, 191 (1976).Google Scholar
  2. 2.
    J. D. Bekenstein, Nuovo Cim. Lett. 4, 737 (1972). Phys. Rev. D 9, 3292 (1974).Google Scholar
  3. 3.
    see e.g., L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics (McGraw–Hill, New York, 1935).Google Scholar
  4. 4.
    J. D. Bekenstein, Lett. Nuovo Cimento, 11, 467 (1974). V. Mukhanov, JETP Letters 44, 63 (1986). J. D. Bekenstein and V. F. Mukhanov, Phys. Lett. B 360, 7 (1995) (gr-qc/ 9505012).Google Scholar
  5. 5.
    J. D. Bekenstein, Proceedings of Marcel Grossmann Meeting, Jerusalem (dy1997) (gr-qc/ 9710076) and references therein. J. D. Bekenstein, Proceedings of 2001: A Spacetime Odyssey (World Scientific, Singapore, 2001) (hep-th/0107045). J. D. Bekenstein, in Advances in Interplay between Quantum and Gravity Physics, P. G. Bergmann and V. de Sabbata, eds. (Kluwer Academic, Dordrecht, 2002), pp. 1–26 (gr-qc/0107049). J. D. Bekenstein and G. Gour, Phys. Rev. D 66, 024005 (2002) (gr-qc/0202034).Google Scholar
  6. 6.
    Ya. I. Kogan, JETP Lett. 44, 267 (1986). Pizma Zh. Eksp. Teor. Fiz. 44, 209 (1986).Google Scholar
  7. 7.
    V. A. Berezin, Phys. Rev. D 55, 2139 (1997) (gr-qc/9602020). Nucl. Phys. Proc. Suppl. 57, 181 (1997) (gr-qc/9701017). V. A. Berezin, A. M. Boyarsky, and A. Yu. Neronov, Phys. Lett. B 455, 109 (1999) (gr-qc/9808027).Google Scholar
  8. 8.
    C. Rovelli and L. Smolin, Nucl. Phys. B 442, 593 (1995) (gr-qc/9411005). A. Ashtekar and J. Lewandowski, Classical Quantum Gravity 14, A55 (1997) (gr-qc/9602046).Google Scholar
  9. 9.
    H. Kastrup, Phys. Lett. B 385, 75 (1996) (gr-qc/9605038).Google Scholar
  10. 10.
    J. Louko and J. Makela, Phys. Rev. D 54, 4982 (1996) (gr-qc/9605058). J. Makela and P. Repo, Phys. Rev. D 57, 4899 (1998) (gr-qc/9708029).Google Scholar
  11. 11.
    A. Barvinsky and G. Kunstatter, Mass spectrum for black holes in generic 2-D dilaton gravity, in Proceedings of the Second International A. D. Sakharov Conference on Physics, I. M. Dremin and A. M. Seminkhatov, eds. (World Scientific, Singapore, 1997), pp. 210–215 (gr-qc/9607030).Google Scholar
  12. 12.
    C. Vaz and L. Witten, Phys. Rev. D 60 (1999) 024009 (gr-qc/9811062). Phys. Rev. D 63, 024008 (2001) (gr-qc/0006039).Google Scholar
  13. 13.
    R. Garattini, Phys. Lett. 459, 461 (1999) (hep-th/9906074). Entropy 2, 26 (2000) (gr-qc/0003089). Int. J. Mod. Phys. A 17, 1965 (2002) (gr-qc/0111068).Google Scholar
  14. 14.
    M. Bojowald, H. A. Kastrup, F. Schramm, and T. Strobl, Phys. Rev. D 62, 044026 (2000) (gr-qc/9906105).Google Scholar
  15. 15.
    A. Alekseev, A. P. Polychronakos, and M. Smedbäck, hep-th/0004036.Google Scholar
  16. 16.
    J. Makela, P. Repo, M. Luomajoki, and J. Piilonen, Phys. Rev. D 64, 024018 (2001) (gr-qc/0012055).Google Scholar
  17. 17.
    A. Barvinsky, S. Das, and G. Kunstatter, Class. Quant. Grav. 18, 4845 (2001) (gr-qc/ 0012066) and Phys. Lett. B 517, 415 (2001) (hep-th/0102061).Google Scholar
  18. 18.
    S. Das, P. Ramadevi, and U. A. Yajnik, Proceedings of First IUCAA Workshop on Interface of Gravitational and Quantum Realms, December 2001 (Mod. Phys. Lett. A 17, 993 (2002)) (hep-th/0202076).Google Scholar
  19. 19.
    D. Louis-Martinez and G. Kunstatter, Phys. Rev. D 52, 3494 (1995) (gr-qc/9503016).Google Scholar
  20. 20.
    A. J. M. Medved and G. Kunstatter, Phys. Rev. D 59, 104005 (1999) (hep-th/9811052).Google Scholar
  21. 21.
    G. Kunstatter, R. Petryk, and S. Shelemy, Phys. Rev. D 57, 3537 (1998) (gr-qc/9709043).Google Scholar
  22. 22.
    J. Louko and B. F. Whiting, Phys. Rev. D 51, 5583 (1995) (gr-qc/9411017).Google Scholar
  23. 23.
    K. V. Kuchar, Phys. Rev. D 50, 3961 (1994) (gr-qc/9403003).Google Scholar
  24. 24.
    T. Thiemann and H. A. Kastrup, Nucl. Phys. B 425, 665 (1994) (gr-qc/9401032).Google Scholar
  25. 25.
    J. Gegenberg, G. Kunstatter, and D. Louis-Martinez, Phys. Rev. D 51, 1781 (1995) (gr-qc/9408015).Google Scholar
  26. 26.
    S. Das, A. Dasgupta, and P. Ramadevi, Mod. Phys. Lett. A 12, 3067 (1997) (hep-th/ 9608162).Google Scholar
  27. 27.
    S. Das, P. Majumdar, and R. K. Bhaduri, Class. Quant. Grav. 19, 2355 (2002) (hep-th/ 0111001).Google Scholar
  28. 28.
    A. J. M. Medved, hep-th/0112056.Google Scholar
  29. 29.
    S. B. Giddings, Phys. Rev. D 46, 1347 (1992) (hep-th/9203059). ibid. Phys. Rev. D 49, 947 (1994) (hep-th/9304027). ibid. Phys. Rev. D 49, 4078 (1994) (hep-th/9310101). T. Banks, M. O'Loughlin, and A. Strominger, Phys. Rev. D 47, 4476 (1993) (hep-th/9211030). D. A. Lowe and M. O'Loughlin, Phys. Rev. D 48, 3735 (1993) (hep-th/9305125). J. D. Bekenstein, Phys. Rev. D 49, 1912 (1994) (gr-qc/9307035). L. Susskind, hep-th/9501106. R. J. Adler, P. Chen, and D. I. Santiago, Gen. Rel. Grav. 33, 2101 (2001) (gr-qc/0106080). P. Chen and R. J. Adler, Proceedings of the 5th UCLA Dark Matter Symposium, Marina del Rey, Ca, Feb. 20-22, 2002 (gr-qc/0205106).Google Scholar
  30. 30.
    M. Barreira, M. Carfora, and C. Rovelli, Gen. Rel. Grav. 28, 1293 (1996) (gr-qc/9603064).Google Scholar
  31. 31.
    P. A. M. Dirac, Proc. Roy. Soc. A 33, 60 (1931). M. N. Saha, Ind. J. Phys. 10 (1936) 145.Google Scholar
  32. 32.
    S. Coleman, Nucl. Phys. B 310, 643 (1988). S. B. Giddings and A. Strominger, Nucl. Phys. B 321, 481 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Andrei Barvinsky
    • 1
  • Saurya Das
    • 2
  • Gabor Kunstatter
    • 3
  1. 1.Theory DepartmentLebedev Physics InstituteMoscowRussia
  2. 2.Department of Mathematics and StatisticsUniversity of New BrunswickFrederictonCanada
  3. 3.Department of Physics and Winnipeg Institute for Theoretical PhysicsUniversity of WinnipegWinnipegCanada

Personalised recommendations