Skip to main content
Log in

On Convergence of a Stochastic Quasigradient Algorithm of Quantile Optimization

  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

For the nonantagonistic two-person game which is equivalent to the problem of minimizing the quantile function, a modification of the stochastic quasigradient algorithm to seek the Nash point was proposed. The Nash point defines both the optimal strategy minimizing the quantile function and the minimum value of this function. Convergence of the algorithm with the probability 1 was proved. The question of choosing the starting point was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kibzun, A.I. and Kan, Yu.S., Stochastic Programming Problems with Probability and Quantile Functions, Chichester: Wiley, 1996.

    Google Scholar 

  2. Kibzun, A.I. and Kuznetsov, E.A., Optimal Control of the Portfolio, Avtom. Telemekh., 2001, no. 9, pp. 101-113.

    Google Scholar 

  3. Kan, Yu.S., Application of the Quantile Optimization to Bond Portfolio Selection, in Stochastic Optimization Techniques. Numerical Methods and Technical Applications. Lect. Notes Econom. Math. Syst., Marti, K., Ed., Berlin: Springer, 2002.

    Google Scholar 

  4. Kibzun, A.I. and Kurbakovskii, V.Yu., Numerical Algorithms of Quantile Optimization and Their Application to Problems with Probabilistic Constraints, Izv. Ross. Akad. Nauk, Tekh. Kibern., 1991, no. 1, pp. 75-81.

    Google Scholar 

  5. Kibzun, A.I. and Kurbakovskiy, V.Yu., Guaranteeing Approach to Solving Quantile Optimization Problems, Ann. Oper. Res., 1991, vol. 30, pp. 81-93.

    Google Scholar 

  6. Kan, Yu.S., Quasigradient Algorithm of Quantile Function Minimization, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 1996, no. 2, pp. 81-86.

    Google Scholar 

  7. Uryas'ev, S.P., Adaptivnye algoritmy stokhasticheskoi optimizatsii i teorii igr (Adaptive Algorithms of Stochastic Optimization and Game Theory), Moscow: Nauka, 1990.

    Google Scholar 

  8. Lepp, R., Minimization of Smooth Function for Probabilistic Constraints, Izv. Eston. Akad. Nauk, Phys. Math., 1980, vol. 29, no.2, pp. 140-144.

    Google Scholar 

  9. Ermol'ev, Yu.M., Metody stokhasticheskogo programmirovaniya (Methods of Stochastic Programming), Moscow: Nauka, 1976.

    Google Scholar 

  10. Polyak, B.T. and Tsypkin, Ya.Z., Pseudogradient Algorithm of Adaptation and Learning, Avtom. Telemekh., 1973, no. 3, pp. 45-68.

    Google Scholar 

  11. Kibzun, A.I. and Tret'yakov, G.L., Differentiability of the Probability Function, Dokl. Ross. Akad. Nauk, 1997, vol. 354, no.2, pp. 159-161.

    Google Scholar 

  12. Kibzun, A.I. and Tret'yakov, G.L., On Smoothness of the Criteria Function in the Problem of Quantile Optimization, Avtom. Telemekh., 1997, no. 9, pp. 69-80.

    Google Scholar 

  13. Kibzun, A. and Uryasev, S., Differentiability of Probability Function, Stoc. Anal. Appl., 1998, vol. 16, no.6, pp. 1101-1128.

    Google Scholar 

  14. Kan, Yu.S. and Kibzun, A.I., Properties of Convexity of the Probability and Quantile Functions in Optimization Problems, Avtom. Telemekh., 1996, no. 3, pp. 82-102.

    Google Scholar 

  15. Malyshev, V.V. and Kibzun, A.I., Analiz i sintez vysokotochnogo upravleniya letatel'nymi apparatami (High-precision Control of Flight Vehicles: Analysis and Design), Moscow: Mashinostroenie, 1987.

    Google Scholar 

  16. Raik, E., On Problems of Stochastic Programming with Functionals of Probability and Quantile, Izv. Eston. Akad. Nauk, Phys. Math., 1972, vol. 21, no.2, pp. 142-148.

    Google Scholar 

  17. Robbins, H. and Monro, S., A Stochastic Approximation Method, Ann. Math. Statist., 1951, no. 22, pp. 400-407.

    Google Scholar 

  18. Gladyshev, E.G., On Stochastic Approximation, Teor. Veroyatn. Primen., 1965, vol. 10, no.2, pp. 297-300.

    Google Scholar 

  19. Prékopa, A., On Logarithmic Concave Measures and Functions, Acta Sci. Math., 1973, vol. 34, pp. 325-343.

    Google Scholar 

  20. Polyak, B.T., Convergence and Rate of Convergence of Iterative Stochastic Algorithms. I, Avtom. Telemekh., 1976, no. 12, pp. 83-94.

    Google Scholar 

  21. Siegmund, D. and Robbins, H., A Convergence Theorem for Nonnegative Almost Supermartingales and Some Applications, in Optimiz. Methods Statist., Rustaji, J.S., Ed., New York: Academic, 1971.

    Google Scholar 

  22. Nazin, A.V., Metod stokhasticheskoi approksimatsii s usredneniem (Method of Stochastic Approximation with Averaging), Moscow: Mosk. Aviats. Inst., 2001.

    Google Scholar 

  23. Prékopa, A., Logarithmic Concave Measures and Related Topics, in Stochastic Programming, Dempster, M.A.H., Ed., London: Academic, 1980.

    Google Scholar 

  24. Fedorov, V.V., Chislennye metody maksimina (Numerical Maximin Methods), Moscow: Nauka, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kan, Y.S. On Convergence of a Stochastic Quasigradient Algorithm of Quantile Optimization. Automation and Remote Control 64, 263–278 (2003). https://doi.org/10.1023/A:1022215131373

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022215131373

Keywords

Navigation