Journal of Chemical Ecology

, Volume 28, Issue 12, pp 2627–2631 | Cite as

Chemical Polymorphism of the Cuticular Lipids of the Cabbage White Pieris rapae

  • Cristian Arsene
  • Stefan Schulz
  • Joop J. A. Van Loon


The epicuticular composition of different body parts of the Cabbage White, Pieris rapae L., was investigated using GC and GC/MS. The major group of components, hydrocarbons, occurs in two distinct classes, which show different distributions on the cuticle of the insects. Unbranched shorter chain compounds (C21 to C31, linear group) dominate on body, head and wings, while longer chain, polymethyl-branched compounds (C35 to C39, branched group) are predominantly found on the antennae. Several other components like 1,3-pentacosadiene and oxygenated aliphatic compounds occur in minor amounts on the cuticle. The reason for this polymorphism is discussed.

Pieris rapae alkanes alkenes alkadienes alcohols alkanediols cuticle cuticular lipids tetrahydrofurans 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Buckner, J. S. Nelson, D. R., and Mardaus, M. C. 1994. The lipid composition of the wax particles from adult whiteflies, Bermisia tabaci and Trialeurodes vaporariorum. Insect Biochem. Molec. Biol. 24:977–987.CrossRefGoogle Scholar
  2. Carlson, D. A., Bernier, U. R., and Sutton, B. D. 1998. Elution patterns from capillary GC for methyl-branched alkanes. J. Chem. Ecol. 24:1845–1866.CrossRefGoogle Scholar
  3. Francis, G. W. and Veland K. 1981. Alkylthiolation for the determination of double-bond positions in linear alkenes. J. Chromatogr. 219:379–384.CrossRefGoogle Scholar
  4. Gibbs, A. G. 2002. Lipid melting and cuticular permeability: New insights into an old problem. J. Insect Physiol. 48:391–400.CrossRefGoogle Scholar
  5. Howard, R. W. 1993. Cuticular hydrocarbons and chemical communication. pp. 179–226 in D. W. Stanley-Samuelson and D. R. Nelson (eds.), Insect Lipids: Chemistry, Biochemistry and Biology, University of Nebraska Press, Lincoln, Nebraska.Google Scholar
  6. Kaissling, K. E. 2001. Olfactory perireceptor and receptor events in moths: A kinetic model. Chem. Senses 26:125–150.CrossRefGoogle Scholar
  7. Kanaujia, S. and Kaissling, K. 1985. Interactions of pheromone with moth antennae: Adsorption, desorption and transport. J. Insect Physiol. 31:71–81.CrossRefGoogle Scholar
  8. Nelson, D. R. and Blomquist, R. J. 1995. Insect waxes: pp. 1–90 in R. J. Hamilton (ed.), Waxes: Chemistry and Molecular Biology and Functions, The Oily Press, Dundee.Google Scholar
  9. Schulz, S. 2001. Composition of the silk lipids of the spider Nephila clavipes. Lipids 36:637–647.CrossRefGoogle Scholar
  10. Young, H. P., Larabee, J. K., Gibbs, A. G., and Schal, C. 2000. Relationship between tissue-specific hydrocarbon profiles and lipid melting temperatures in the cockroach Blattella germanica J. Chem. Ecol. 26:1245–1263.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Cristian Arsene
    • 1
  • Stefan Schulz
    • 1
  • Joop J. A. Van Loon
    • 2
  1. 1.Institut für Organische ChemieTechnische Universität BraunschweigBraunschweigGermany
  2. 2.Laboratory of EntomologyWageningen UniversityEH WageningenThe Netherlands

Personalised recommendations