Journal of Chemical Ecology

, Volume 28, Issue 12, pp 2399–2409 | Cite as

Relationship Between Nutritional Composition of Plant Species and Infestation Levels of Thrips

  • Alison S. Scott Brown
  • Monique S. J. Simmonds
  • Walter M. Blaney


Levels of soluble protein and carbohydrate (raffinose, sucrose, glucose, and fructose) in leaves from a selection of plant species were measured to determine if a relationship existed between these nutrients and infestation by Frankliniella occidentalis and Heliothrips haemorrhoidalis. Most species of host plant examined contained a higher proportion of protein than carbohydrates, and overall, leaves from species of plants that supported populations of thrips had greater levels of protein than leaves from nonhost species. New leaves and flowers that supported F. occidentalis contained high levels of carbohydrate and protein. The quantity of protein in leaves at the top of the tree, Peumus boldus, was greater than in leaves from lower levels, and the amount of feeding damage accrued by H. haemorrhoidalis was greater on the upper foliage than lower foliage. Oviposition by H. haemorrhoidalis was positively correlated to levels of protein in host plants but not to levels of carbohydrates. Overall, levels of soluble protein in plants influenced their susceptibility to thrips more than levels of carbohydrates.

Carbohydrate protein sucrose fructose glucose raffinose Frankliniella occidentalis Heliothrips haemorrhoidalis host plant nutrition oviposition feeding damage 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bernays, E. A. and Chapman, R. F. 1994. Chemicals in plants, pp. 14–60, in Host-Plant Selection by Phytophagous Insects. Chapman and Hall, London, United Kingdom.CrossRefGoogle Scholar
  2. Bernays, E. A. and Simpson, S. J. 1982. Control of food intake. Adv. Insect Physiol. 16:59–118.CrossRefGoogle Scholar
  3. Blaney, W. M. and Simmonds, M. J. S. (1988). Food selection in adults and larvae of three species of Lepidoptera: a behavioural and electrophysiological study. Entomol. Exp. Appl. 49:111–121.CrossRefGoogle Scholar
  4. Boyce, A. M. and Persing, C. O. 1939. Tartar emetic in the control of citrus thrips on lemons. J. Econ. Entomol. 32:153.Google Scholar
  5. Brown, R. E., Jarvis, K. L., and Hyland, K. J. 1989. Protein measurement using bicinchoninic acid: elimination of interfering substances. Anal. Biochem. 180:136–139.CrossRefGoogle Scholar
  6. Derridj, S., Wu, B. R., Stammitti, L., Garrec, J. P., and Derrien, A. 1996. Chemicals on the leaf surface: information about the plant available to insects. Entomol. Exp. Appl. 80:197–201.CrossRefGoogle Scholar
  7. Fowler, J., Cohen, L., and Jarvis, P. 1999. Comparing averages, pp. 165–178, in Practical Statistics for Field Biologists. Wiley, London, United Kingdom.Google Scholar
  8. Gonzalez, J. A., Roldan, A., Gallardo, M., Escudero, T., and Prado, F. E. 1989. Quantitative determinations of chemical compounds with nutritional value from Inca crops: Chenopodium quinoa ('quinoa'). Plant Food Hum. Nutr. 39:331–337.CrossRefGoogle Scholar
  9. Karowe, D. N. and Martin, M. M. 1989. The effects of quantity and quality of diet nitrogen on growth, efficiency of food utilization, nitrogen budget and metabolic rate of fifth-instar Spodotera eridania larvae (Lepidoptera: Noctuidae). J. Insect Physiol. 35:699–708.CrossRefGoogle Scholar
  10. Mattson, W. J. 1980. Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 102:391–403.Google Scholar
  11. MCneill, S. and Southwood, T. R. E. 1978. Role of nitrogen in the development of insect-plant relationships, pp. 77–98, in J. B. Harbourne (ed.). Biochemical Aspects of Plant and Animal Coevolution. Academic Press, New York.Google Scholar
  12. Morse, J. G. 1995. Prospects for IPM of citrus thrips in California, pp. 371–379, in B. L. Parker, M. Skinner, and T. Lewis (eds.). Thrips Biology and Management. Plenum Press, New York.CrossRefGoogle Scholar
  13. Ohgushi, T. 1992. Resource limitation on insect herbivore populations, pp. 199–241, in T. Hunter, T. Ohgushi, and P. W. Price (eds.). Effects of Resource Distribution on Animal-Plant Interactions. Academic Press, San Diego, California.CrossRefGoogle Scholar
  14. Parrella, M. P. 1995. IPM-approaches and prospects, pp. 357–363, in B. L. Parker, M. Skinner, and T. Lewis (eds.). Thrips Biology and Management. Plenum Press, New York.CrossRefGoogle Scholar
  15. Pierce Chemical. 1996. BCA protein assay reagent kit. Instruction 23225. Pierce Chemical Company, Chicago, Illinois.Google Scholar
  16. Schoonhoven, L. M., Jermy, T., and Loon Van, J. J. A. 1998. Plants as insect food: not the ideal, pp. 83–120, in Insect-Plant Biology, Chapman and Hall, London, United Kingdom.CrossRefGoogle Scholar
  17. Schoonhoven, L. M., Jermy, T., and Loon Van, J. J. A. 1998b. Host plant selection: when to accept a plant, pp. 155–193, in Insect-Plant Biology, Chapman and Hall, London, United Kingdom.CrossRefGoogle Scholar
  18. Scott Brown, A. S. 2002. Interactions of thrips and their control agents on host plants within a glasshouse containing a diverse collection of plant species. PhD. Birkbeck College, University of London, London, United Kingdom.Google Scholar
  19. Scott Brown, A. S., Simmonds, M. S. J., and Blaney, W. M. 1999. Influence of host plants on the predation of thrips by Neoseiulus cucumeris, Iphiseius degenerans and Orius laevigatus. Entomol. Exp. Appl. 92:283–288.CrossRefGoogle Scholar
  20. Slansky, F. 1993. Nutritional Ecology: The fundamental quest for nutrients, pp. 29–91, in N. E. Stamp and T. M. Casey (eds.). Caterpillar—Ecology and Evolutionary Constraints on Foraging. Chapman and Hall, New York.Google Scholar
  21. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150:76–85.CrossRefGoogle Scholar
  22. Strong, D. R., Lawton, J. H., and Southwood, T. R. E. 1984. Insects on plants: community patterns and mechanisms. Blackwell Scientific Publications, Oxford, United Kingdom.Google Scholar
  23. Trichilo, P. J. and Leigh, T. F. 1988. Influence of resource quality on the reproductive fitness of flower thrips (Thysanoptera: Thripidae). Ann. Entomol. Soc. Am. 81:64–70.CrossRefGoogle Scholar
  24. Ullman, D. E., Cho, J. J., Mau, R. F. L., Hunter, W. B., Westcot, D. M., and Custer, D.M. 1992. Thrips-tomato spotted wilt virus interactions: morphological, behavioural and cellular components influencing thrips transmission. Adv. Dis. Vector Res. 9:195–240.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Alison S. Scott Brown
    • 1
    • 2
  • Monique S. J. Simmonds
    • 1
  • Walter M. Blaney
    • 2
  1. 1.Royal Botanic GardensKew, SurreyUnited Kingdom
  2. 2.School of Biological and Chemical Sciences, Birkbeck CollegeUniversity of LondonLondonUnited Kingdom

Personalised recommendations