Skip to main content
Log in

Climbing Mount Scalable: Physical Resource Requirements for a Scalable Quantum Computer

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The primary resource for quantum computation is Hilbert-space dimension. Whereas Hilbert space itself is an abstract construction, the number of dimensions available to a system is a physical quantity that requires physical resources. Avoiding a demand for an exponential amount of these resources places a fundamental constraint on the systems that are suitable for scalable quantum computation. To be scalable, the effective number of degrees of freedom in the computer must grow nearly linearly with the number of qubits in an equivalent qubit-based quantum computer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Quantum Information Science: An Emerging Field of Interdisciplinary Research and Education in Science and Engineering, Report of NSF Workshop, October 28-29, 1999, Arlington,VA; http://www.nsf.gov/cgi-bin/getpub?nsf00101.

  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).

    Google Scholar 

  3. D. P. DiVincenzo, Fortschr. Phys. 48, 771 (2000).

    Google Scholar 

  4. R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).

    Google Scholar 

  5. R. Raussendorf and H. J. Briegel, “Computational model underlying the one-way quantum computer,” unpublished, arXiv. org e-print quant-ph/0108067.

  6. M. A. Nielsen, “Universal quantum computation using only projective measurement, quantum memory, and the preparation of the |0〉 state,” unpublished, arXiv. org e-print quant-ph/ 0108020.

  7. P. W. Shor, Phys. Rev. A 52, R2493 (1995).

    Google Scholar 

  8. A. Steane, Proc. R. Soc. London A 452, 2551 (1996).

    Google Scholar 

  9. E. Knill and R. Laflamme, Phys. Rev. A 55, 900 (1997).

    Google Scholar 

  10. D. Aharonov and M. Ben-Or, in Proceedings of the 29th Annual ACM Symposium on Theory of Computing (ACM Press, New York, 1997), p. 176; see also arXiv.org e-print quant-ph/9906129.

    Google Scholar 

  11. J. Preskill, Proc. R. Soc. London A 454, 385 (1998).

    Google Scholar 

  12. E. Knill, R. Laflamme, and W. H. Zurek, Science 279, 342 (1998).

    Google Scholar 

  13. E. Knill, R. Laflamme, and W. H. Zurek, Proc. R. Soc. London A 454, 365 (1998).

    Google Scholar 

  14. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).

    Google Scholar 

  15. R. Cleve, in Quantum Computation and Quantum Information Theory, C. Macchiavello, G. M. Palma, and A. Zeilinger, eds. (World Scientific, Singapore, 2000), p. 103.

    Google Scholar 

  16. P. Zanardi, Phys. Rev. Lett. 87, 077901 (2001).

    Google Scholar 

  17. J. Ahn, C. Weinacht, and P. H. Bucksbaum, Science 287, 463 (2000).

    Google Scholar 

  18. R. Zadoyan, D. Kohen, D. A. Lidar, and V. A. Apkarian, Chem. Phys. 266, 323 (2001); V. V. Lozovoy and M. Dantus, Chem. Phys. Lett. 351, 213 (2002). The authors of both these papers point out that the Hilbert space of a single molecule is not suitable for scalable quantum computation.

    Google Scholar 

  19. M. N. Leuenberger and D. Loss, Nature 410, 789 (2001).

    Google Scholar 

  20. A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic, Dordrecht, 1993), p. 373.

    Google Scholar 

  21. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, 3rd edn. (Oxford University Press, Oxford, 1998), p. 172.

    Google Scholar 

  22. D. A. Meyer, Science 289, 1431a (2000).

    Google Scholar 

  23. P. G. Kwiat and R. J. Hughes, Science 289, 1431a (2000).

    Google Scholar 

  24. M. W. Noel and C. R. Stroud, Jr., Phys. Rev. Lett. 77, 1913 (1996).

    Google Scholar 

  25. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, Science 288, 824 (2000).

    Google Scholar 

  26. D. Kielpinski, C. Monroe, and D. J. Wineland, Nature 417, 709 (2002).

    Google Scholar 

  27. P. T. Cochrane and G. J. Milburn, Phys. Rev. A 64, 062312 (2001).

    Google Scholar 

  28. N. J. Cerf, C. Adami, and P. G. Kwiat, Phys. Rev. A 57, R1477 (1998).

    Google Scholar 

  29. P. G. Kwiat, J. R. Mitchell, P. D. D. Schwindt, and A. G. White, J. Mod. Opt. 47, 257 (2000).

    Google Scholar 

  30. J. F. Clauser and J. P. Dowling, Phys. Rev. A 53, 4587 (1996).

    Google Scholar 

  31. N. Bhattacharya, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, Phys. Rev. Lett. 88, 137901 (2002).

    Google Scholar 

  32. G. J. Milburn, Phys. Rev. Lett. 62, 2124 (1989).

    Google Scholar 

  33. E. Knill, R. Laflamme, and G. J. Milburn, Nature 409, 46 (2001).

    Google Scholar 

  34. S. D. Bartlett, B. C. Sanders, S. L. Braunstein, and K. Nemoto, Phys. Rev. Lett. 88, 097904 (2002).

    Google Scholar 

  35. S. D. Bartlett and B. C. Sanders, “Efficient classical simulation of optical quantum circuits,” unpublished, arXiv.org e-print quant-ph/0204065.

  36. S. B. Bravyi and A. Yu. Kitaev, “Fermionic quantum computation,” unpublished, arXiv. org e-print quant-ph/0003137.

  37. B. M. Terhal and D. P. DiVincenzo, Phys. Rev. A 65, 032325 (2002).

    Google Scholar 

  38. E. Knill, “Fermionic linear optics and matchgates,” unpublished, arXiv.org e-print quantph/ 0108033.

  39. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, Phys. Rev. A 52, 3457 (1995).

    Google Scholar 

  40. J. L. Dodd, M. A. Nielsen, M. J. Bremner, and R. T. Thew, Phys. Rev. A 65, 040301(R) (2002).

    Google Scholar 

  41. M. A. Nielsen, M. J. Bremner, J. L. Dodd, A. M. Childs, and C. M. Dawson, “Universal simulation of Hamiltonian dynamics for qudits,” unpublished, arXiv.org e-print quant-ph/ 0109064.

  42. A. Ekert and R. Jozsa, Phil. Trans. R. Soc. London A 356, 1769 (1998).

    Google Scholar 

  43. W. H. Zurek, Phys. Today 44(10), 36 (1991).

    Google Scholar 

  44. D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I.-O. Stamatescu, and H. D. Zeh, Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, Berlin, 1996).

    Google Scholar 

  45. J. R. Anglin, J. P. Paz, and W. H. Zurek, Phys. Rev. A 55, 4041 (1997).

    Google Scholar 

  46. D. G. Cory et al., Fortschr. Phys. 48, 875 (2000).

    Google Scholar 

  47. J. A. Jones, Fortschr. Phys. 48, 909 (2000).

    Google Scholar 

  48. L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, Nature 414, 883 (2001).

    Google Scholar 

  49. W. S. Warren, Science 277, 1688 (1997).

    Google Scholar 

  50. L. J. Schulman and U. V. Vazirani, in Proceedings of the 31st Annual ACM Symposium on Theory of Computing (ACM Press, New York, 1999), p. 322; see also arXiv.org e-print quant-ph/9804060.

    Google Scholar 

  51. D. E. Chang, L. M. K. Vandersypen, and M. Steffen, Chem. Phys. Lett. 338, 337 (2001).

    Google Scholar 

  52. A. Ambainis, L. J. Schulman, and U. V. Vazirani, in Proceedings of the 32nd Annual ACM Symposium on Theory of Computing (ACM Press, New York, 2000), p. 697; see also arXiv.org e-print quant-ph/0003136.

    Google Scholar 

  53. E. Knill and R. Laflamme, Phys. Rev. Lett. 81, 5672 (1998).

    Google Scholar 

  54. R. Laflamme, D. G. Cory, C. Negrevergne, and L. Viola, Quant. Inf. Comp. 2, 166 (2002).

    Google Scholar 

  55. R. Jozsa, in The Geometric Universe: Science, Geometry, and the Work of Roger Penrose, S. A. Huggett, L. J. Mason, K. P. Tod, S. T. Tsou, and N. M. J. Woodhouse, eds. (Oxford University Press, Oxford, England, 1998), p. 369.

    Google Scholar 

  56. S. Lloyd, Phys. Rev. A 61, 010301(R) (1999).

    Google Scholar 

  57. P. Knight, Science 287, 441 (2000).

    Google Scholar 

  58. R. Jozsa and N. Linden, “On the role of entanglement in quantum computational speedup,” unpublished, arXiv.org e-print quant-ph/0201143.

  59. S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, Phys. Rev. Lett. 83, 1054 (1999).

    Google Scholar 

  60. N. C. Menicucci and C. M. Caves, Phys. Rev. Lett. 88, 167901 (2002).

    Google Scholar 

  61. S. Lloyd, Science 273, 1073 (1996).

    Google Scholar 

  62. C. M. Caves, C. A. Fuchs, and R. Schack, Phys. Rev. A 65, 022305 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blume-Kohout, R., Caves, C.M. & Deutsch, I.H. Climbing Mount Scalable: Physical Resource Requirements for a Scalable Quantum Computer. Foundations of Physics 32, 1641–1670 (2002). https://doi.org/10.1023/A:1021471621587

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021471621587

Navigation