Skip to main content
Log in

New Proof of the Cheeger–Müller Theorem

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We present a short analytic proof of the equality between the analytic and combinatorialtorsion. We use the same approach as in the proof given by Burghelea, Friedlander andKappeler, but avoid using the difficult Mayer-Vietoris type formula for the determinantsof elliptic operators. Instead, we provide a direct way of analyzing the behaviour of thedeterminant of the Witten deformation of the Laplacian. In particular, we show that thisdeterminant can be written as a sum of two terms, one of which has an asymptoticexpansion with computable coefficients and the other is very simple (no zeta-functionregularization is involved in its definition).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bismut, J.-M., Gillet, H. and Soulé, C.: Analytic torsion and holomorphic determinant bundles, i, Commun. Math. Phys. 115 (1988), 49–78.

    Google Scholar 

  2. Bismut, J.-M. and Zhang, W.: An extension of a theorem by Cheeger and Müller, Astérisque 205 (1992).

  3. Bismut, J.-M. and Zhang, W.: Milnor and Ray-Singer metrics on the equivariant determinant of a flat vector bundle, Geom. Funct. Anal. 4 (1994), 136–212.

    Google Scholar 

  4. Burghelea, D., Friedlander, L. and Kappeler, T.: Mayer–Vietoris type formula for determinants of elliptic differential operators, J. Funct. Anal. 107 (1992), 34–65.

    Google Scholar 

  5. Burghelea, D., Friedlander, L. and Kappeler, T.: Asymptotic expansion of the Witten deformation of the analytic torsion, J. Funct. Anal. 137 (1996), 320–363.

    Google Scholar 

  6. Burghelea, D., Friedlander, L., Kappeler, T. and McDonald, P.: Analytic and Reidemeister torsion for representations in finite type Hilbert modules, Geom. Funct. Anal. 6 (1996), 751–859.

    Google Scholar 

  7. Cheeger, J.: Analytic torsion and the heat equation, Ann. of Math. 109 (1979), 259–300.

    Google Scholar 

  8. Cycon, H. L., Froese, R. G., Kirsch, W. and Simon, B.: Schrödinger Operators with Applications to Quantum Mechanics and Global Geometry, Texts Monographs Phys., Springer-Verlag, Berlin, 1987.

    Google Scholar 

  9. Helffer, B. and Sjöstrand, J.: Puits multiples en limite semi-classicue. IV. étude du complexe de Witten, Comm. Partial Differential Equations 10 (1985), 245–340.

    Google Scholar 

  10. Knudsen, F. F. and Mumford, D.: The projectivity of the moduli spaces of stable curves, I: Preliminaries on ‘det’ and ‘div’, Math. Scand. 39 (1976), 19–55.

    Google Scholar 

  11. Milnor, J.: Lectures on the h-Cobordism Theorem, Princeton Univ. Press, Princeton, NJ, 1965.

    Google Scholar 

  12. Milnor, J.: Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358–426.

    Google Scholar 

  13. Müller, W.: Analytic torsion and R-torsion on Riemannian manifolds, Adv. Math. 28 (1978), 233–305.

    Google Scholar 

  14. Müller, W.: Analytic torsion and R-torsion for unimodular representation, J. Amer. Math. Soc. 6 (1993), 721–753.

    Google Scholar 

  15. Ray, D. B. and Singer, I. M.: R-torsion and the Laplacian on Riemannian manifolds, Adv. Math. 7 (1971), 145–210.

    Google Scholar 

  16. Seeley, R.: Complex powers of elliptic operators, Proc. Sympos. Pure Appl. Math. Amer. Math. Soc. 10 (1967), 288–307.

    Google Scholar 

  17. Shubin, M. A.: Pseudodifferential Operators and Spectral Theory, Springer-Verlag, Berlin, 1980.

    Google Scholar 

  18. Shubin, M. A.: Semiclassical asymptotics on covering manifolds and Morse inequalities, Geom. Funct. Anal. 6 (1996), 370–409.

    Google Scholar 

  19. Smale, S.: On gradient dynamical systems, Ann. of Math. 74 (1961), 199–206.

    Google Scholar 

  20. Smale, S.: Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817.

    Google Scholar 

  21. Thom, R.: Sur une partition en cellules associée à une fonction sur une variété, C.R. Acad. Sci. Paris, Sér. A 228 (1949), 661–692.

    Google Scholar 

  22. Witten, E.: Supersymmetry and Morse theory, J. Differential Geom. 17 (1982), 661–692.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braverman, M. New Proof of the Cheeger–Müller Theorem. Annals of Global Analysis and Geometry 23, 77–92 (2003). https://doi.org/10.1023/A:1021227705930

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021227705930

Navigation