, Volume 6, Issue 4, pp 381–413 | Cite as

Using Genetic Algorithms for Solving Hard Problems in GIS

  • Steven van Dijk
  • Dirk Thierens
  • Mark de Berg


Genetic algorithms (GAs) are powerful combinatorial optimizers that are able to find close-to-optimal solutions for difficult problems by applying the paradigm of adaptation through Darwinian evolution. We describe a framework for GAs capable of solving certain optimization problems encountered in geographical information systems (GISs). The framework is especially suited for geographical problems since it is able to exploit their geometrical structure with a novel operator called the geometrically local optimizer. Three such problems are presented as case studies: map labeling, generalization while preserving structure, and line simplification. Experiments show that the GAs give good results and are flexible as well.

geographic information systems genetic algorithms map labeling line simplification generalization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, and R.E. Smith (Ed.). Proceedings of the Genetic and Evolutionary Computation Conference. Morgan-Kaufmann, 1999.Google Scholar
  2. 2.
    M.F. Bramlette and E.E. Bouchard. Genetic Algorithms in Parametic Design of Aircraft, chapter 10, pages 109-123, in Davis [4], 1991.Google Scholar
  3. 3.
    J. Christensen, J. Marks, and S. Shieber. “An empirical study of algorithms for point-feature label placement,” ACM Transactions on Graphics, Vol. 14(3):203-232, 1995.Google Scholar
  4. 4.
    L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.Google Scholar
  5. 5.
    D.H. Douglas and T.K. Peucker. “Algorithms for reduction of the number of points required to represent a digitized line or its caricature,” The Canadian Cartographer, Vol. 10(2):112-122, 1973.Google Scholar
  6. 6.
    R. Duda and P. Hart. Pattern Recognition and Scene Analysis. Wiley, 1973.Google Scholar
  7. 7.
    F. Glover. Tabu search. in Reeves, editor, Modern Heuristic Techniques for Combinatorial Problems, volume C, pages 70-141, Blackwell Scientific Publishing, 1993.Google Scholar
  8. 8.
    D.E. Goldberg. “Genetic algorithms and Walsh functions: Part I, a gentle introduction,” Complex Systems, Vol. 3(2):129-152, 1989.Google Scholar
  9. 9.
    D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, 1989.Google Scholar
  10. 10.
    G. Harik and F. Lobo. “A parameter-less genetic algorithm,” in Banzhaf et al., Proceedings of the Genetic and Evolutionary Computation Conference, pp. 258-265.Google Scholar
  11. 11.
    J.H. Holland. Adaptation in natural and artificial systems. University of Michigan Press: Ann Arbor, 1975.Google Scholar
  12. 12.
    H. Imai and M. Iri. “Polygonal approximations of a curve—formulations and algorithms,” Computational Morphology, 1988.Google Scholar
  13. 13.
    H. Kargupta and K. Sarkar. “Function induction, gene expression, and evolutionary representation construction,” in Banzhaf et al., Proceedings of the Genetic and Evolutionary Computation Conference, pp. 313-320.Google Scholar
  14. 14.
    C.L. Karr. Air-Injected Hydrocyclone Optimization via Genetic Algorithm, in Davis, Handbook of Genetic Algorithms, chapter 16, pp. 222-236, 1991.Google Scholar
  15. 15.
    S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. “Optimization by simulated annealing,” Science, 220(4598): 671-680, 1983.Google Scholar
  16. 16.
    G.E. Liepins and W.D. Potter. A Genetic Algorithm Approach to Multiple-Fault Diagnosis, chapter 17, pp. 237-250, in Davis, Handbook of Genetic Algorithms, 1991.Google Scholar
  17. 17.
    F. Lobo. The Parameter-less Genetic Algorithm: Rational and Automated Parameter Selection for Simplified Genetic Algorithm Operation. Ph.D. thesis, University of Lisbon, 2000.Google Scholar
  18. 18.
    J. Marks and S. Shieber. The computational complexity of cartographic label placement. Technical Report TR-05-91, Harvard CS, 1991.Google Scholar
  19. 19.
    M. Pelikan and F. Lobo. Parameter-less genetic algorithm: A worst-case time and space complexity analysis. Technical report, University of Illinois, March 1999.Google Scholar
  20. 20.
    G. Raidl. “A genetic algorithm for labeling point features,” in Proceedings of the International Conference on Imaging Science, Systems, and Technology, pp. 189-196, 1998.Google Scholar
  21. 21.
    D. Thierens. Estimating the significant non-linearities in the genome problem-coding, in Banzhaf et al., Proceedings of the Genetic and Evolutionary Computation Conference, pp. 643-648.Google Scholar
  22. 22.
    D. Thierens. “Scalability problems of simple genetic algorithms,” Evolutionary Computation, Vol. 7(4):331-352, 1999.Google Scholar
  23. 23.
    D. Thierens and D.E. Goldberg. “Mixing in genetic algorithms,” in S. Forrest (Ed.), Proceedings of the 5th International Conference on Genetic Algorithms and their Applications, pp. 38-45, Morgan-Kaufmann, 1993.Google Scholar
  24. 24.
    D. Thierens and D.E. Goldberg. “Elitist recombination: an integrated selection recombination GA,” in Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 508-512, IEEE Press, 1994.Google Scholar
  25. 25.
    S. van Dijk. Genetic Algorithms for Map Labeling. Ph.D. thesis, Utrecht University, 2001.Google Scholar
  26. 26.
    S. van Dijk, D. Thierens, and M. de Berg. Robust genetic algorithms for high quality map labeling. Technical Report TR-1998-41, Utrecht University, 1998.Google Scholar
  27. 27.
    S. van Dijk, D. Thierens, and M. de Berg. On the design of genetic algorithms for geographical applications, in Banzhaf et al., Proceedings of the Genetic and Evolutionary Computation Conference, pp. 188-195.Google Scholar
  28. 28.
    S. van Dijk, D. Thierens, and M. de Berg. “Scalability and efficiency of genetic algorithms for geometrical applications,” in M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J.J. Merelo, and H.-P. Schwefel (Eds), Lecture Notes in Computer Science, Volume 1917: Proceedings of the Parallel Problem Solving from Nature VI Conference, pp. 683-692, Springer-Verlag, 2000.Google Scholar
  29. 29.
    O. Verner, R. Wainwright, and D. Schoenefeld. “Placing text labels on maps and diagrams using genetic algorithms with masking,” INFORMS Journal on Computing, Vol. 9(3):266-275, 1997.Google Scholar
  30. 30.
    B. Verweij and K. Aardal. “An optimisation algorithm for maximum independent set with applications in map labelling,” in Lecture Notes in Computer Science, Volume 1643: Proceedings of the Seventh Annual European Symposium on Algorithms, pp. 426-437, Springer-Verlag, 1999.Google Scholar
  31. 31.
    G. Zhang and J. Tulip. “An algorithm for the avoidance of sliver polygons and clusters of points in spatial overlay,” in Proceedings of the 4th International Spatial Data Handling Conference, pp. 141-150, 1990.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Steven van Dijk
    • 1
  • Dirk Thierens
    • 1
  • Mark de Berg
    • 1
  1. 1.Institute of Information and Computing SciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations