Skip to main content
Log in

On Determining the Eigenprojection and Components of a Matrix

  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Matrix theory and its applications make wide use of the eigenprojections of square matrices. The paper demonstrated that the eigenprojection of a matrix A can be calculated with the use of any annihilating polynomial for A u, where u ≥ ind A. This enables one to establish the components and the minimum polynomial of A, as well as the Drazin inverse A D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Campbell, S.L., Meyer, C.D., Jr., and Rose, N.J., Applications of the Drazin Inverse to Linear Systems of Differential Equations with Singular Constant Coefficients, SIAM J.Appl.Math., 1976, vol. 31, pp. 411–425.

    Google Scholar 

  2. Simeon, B., Führer, C., and Rentrop, P., The Drazin Inverse in Multibody System Dynamics, Numerische Math., 1993, vol. 64, pp. 27–34.

    Google Scholar 

  3. Macmillan, W.D., Dynamics of Rigid Bodies, New York: Dover, 1936. Translated under the title Dinamika tverdogo tela, Moscow: Inostrannaya Literatura, 1951.

    Google Scholar 

  4. Gantmakher, F.R., Teoriya matrits (Theory of Matrices), Moscow: Nauka, 1988. Translated into English under the title Theory of Matrices, New York: Chelsea, 1959.

    Google Scholar 

  5. Lancaster, P., Theory of Matrices, New York: Academic, 1969. Translated under the title Teoriya matrits, Moscow: Nauka, 1982.

    Google Scholar 

  6. Meyer, C.D., Jr., The Role of the Group Generalized Inverse in the Theory of Finite Markov Chains, SIAM Rev., 1975, vol. 17, pp. 443–464.

    Google Scholar 

  7. Chebotarev, P. and Agaev, R., Forest Matrices Around the Laplacian Matrix, 2002 (in press).

  8. Hartwig, R.E. and Levine, J., Applications of the Drazin Inverse to the Hill Cryptographic System, Part III, Cryptologia, 1981, vol. 5, pp. 67–77.

    Google Scholar 

  9. Chipman, J.S., Estimation and Aggregation in Econometrics: An Application of the Theory of Generalized Inverses, in Generalized Inverses and Applications, Nashed, M., Ed., New York: Academic, 1976, pp. 549–769.

    Google Scholar 

  10. Wilkinson, J.H., Note on the Practical Significance of the Drazin Inverse, in Recent Applications of Generalized Inverses, Campbell, S.L., Ed., London: Pitman, 1982, pp. 82–99.

    Google Scholar 

  11. Ben-Israel, A. and Greville, T.N.E., Generalized Inverses: Theory and Applications, New York: Wiley, 1974.

    Google Scholar 

  12. Campbell, S.L. and Meyer, C.D. Jr., Generalized Inverses of Linear Transformations, London: Pitman, 1979.

    Google Scholar 

  13. Hartwig, R.E., More on the Souriau-Frame Algorithm and the Drazin Inverse, SIAM J.Appl.Math., 1976, vol. 31, pp. 42–46.

    Google Scholar 

  14. Rothblum, U.G., Computation of the Eigenprojection of a Nonnegative Matrix at Its Spectral Radius, Math.Program.Study, 1976, vol. 6, pp. 188–201.

    Google Scholar 

  15. Rothblum, U.G., A Representation of the Drazin Inverse and Characterizations of the Index, SIAM J.Appl.Math., 1976, vol. 31, pp. 646–648.

    Google Scholar 

  16. Wei, Y., A Characterization and Representation of the Drazin Inverse, SIAM J.Matrix Anal.Appl., 1996, vol. 17, pp. 744–747.

    Google Scholar 

  17. Zhang, L., A Characterization of the Drazin Inverse, Linear Algebra Appl., 2001, vol. 335, pp. 183–188.

    Google Scholar 

  18. Koliha, J.J. and Strafiskraba, I., Power Bounded and Exponentially Bounded Matrices, Appl.Math., 1999, vol. 44, pp. 289–308.

    Google Scholar 

  19. Harte, R.E., Spectral Projections, Irish Math.Soc.Newsletter, 1984, vol. 11, pp. 10–15.

    Google Scholar 

  20. Koliha, J.J., Block Diagonalization, Math.Bohemica, 2001, vol. 126, pp. 237–246.

    Google Scholar 

  21. Faddeev, D.K. and Faddeeva, V.N., Vychislitel'nye metody lineinoi algebry (Computational Methods of Linear Algebra), Moscow: Fizmatgiz, 1963. Translated into English under the titles Computational Methods of Linear Algebra, San-Francisco: Freeman, 1963 and Numerical Methods in Linear Algebra, New York: Dover, 1959.

    Google Scholar 

  22. Meyer, C.D., Jr., Limits and the Index of a Square Matrix, SIAM J.Appl.Math., 1974, vol. 26, pp. 469–478.

    Google Scholar 

  23. Meyer, C.D. and Stadelmaier, M.W., Singular M-Matrices and Inverse Positivity, Linear Algebra Appl., 1978, vol. 22, pp. 139–156.

    Google Scholar 

  24. Ben-Izrael, A. and Charnes, A., Contributions to the Theory of Generalized Inverses, J.Soc.Indust.Appl.Math., 1963, vol. 11, pp. 667–699.

    Google Scholar 

  25. Horn, R. and Johnson, C., Matrix Analysis, New York: Cambridge Univ. Press, 1985. Translated under the title Matrichnyi analiz, Moscow: Mir, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agaev, R.P., Chebotarev, P.Y. On Determining the Eigenprojection and Components of a Matrix. Automation and Remote Control 63, 1537–1545 (2002). https://doi.org/10.1023/A:1020488410896

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020488410896

Keywords

Navigation