Skip to main content
Log in

Non-Classical Behavior of Atoms in an Interferometer

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Using the time-dependent wave function we have studied the properties of the atomic transverse motion in an interferometer, and the cause of the non-classical behavior of atoms reported by Kurtsiefer, Pfau, and Mlynek [Nature 386, 150 (1997)]. The transverse wave function is derived from the solution of the two-dimensional Schrödinger's equation, written in the form of the Fresnel–Kirchhoff diffraction integral. It is assumed that the longitudinal motion is classical. Comparing data of the space distribution and of the transverse momentum distribution in interferometers with one and two open slits, it follows that the atomic motion is influenced by the atomic matter wave and violates the laws of classical mechanics. However, the negative values of Wigner's function should not be taken as evidence that the atoms in an interferometer violate the classical statistical law of the addition of positive probabilities. This inference follows from the comparison of properties of Wigner's function and of the de Broglian probability density in phase space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Ch. Kurtsiefer, T. Pfau, and J. Mlynek, “Measurement of the Wigner function of an ensemble of helium atoms,” Nature 386, 150 (1997).

    Google Scholar 

  2. T. Pfau and Ch. Kurtsiefer, “Partial reconstruction of the motional Wigner function of an ensemble of helium atoms,” J. Modern Opt. 44, 2551 (1997).

    Google Scholar 

  3. D. Leibfried, T. Pfau, and C. Monroe, “Shadows and mirrors: Reconstructing quantum states of atom motion,” Physics Today p. 22 (April 1998).

  4. S. I. Tomonaga, Quantum Mechanics, Vol. II (North-Holland, Amsterdam, 1962).

  5. W. H. Zurek, “Decoherence and the transition from quantum to classical,” Physics Today p. 36 (October 1991).

  6. R. Bonifacio and S. Olivares, “Young's experiment, Schrödinger's spread and spontaneous intrinsic decoherence,” in Proceedings 3rd Workshop on Mysteries, Puzzles and Paradoxes in Quantum Mechanics, R. Bonifacio et al., eds. Z. Naturforsch. 56a, 41 (2001)

  7. M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1965).

    Google Scholar 

  8. A. Zeilinger, R. Gaehler, C. G. Shull, and W. Treimer, “Experimental status and recent results of neutron interference optics,” ''Neutron Scattering'' Argonne National Laboratory Conference (1981): American Institute of Physics Conference Proceedings No. 89 (New York, 1982).

  9. M. Božic´, D. Arsenovic´, and L. Vuškovic´, “Transverse momentum distribution of atoms in an interferometer,” Z. Naturforsch. 56a, 173 (2001).

    Google Scholar 

  10. D. Arsenovic´, M. Božic´, and L. Vučkovic´, “Is the classical law of the addition of probabilities violated in quantum interference?,” J. Opt. B: Quantum Semiclass. Opt. 4, S358 (2002).

    Google Scholar 

  11. E. Hecht, Optics (Addison-Wesley, Reading, MA, 1987).

    Google Scholar 

  12. E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749 (1932).

    Google Scholar 

  13. J. E. Moyal, “Quantum mechanics as a statistical theory,” Proc. Cambridge Phil. Soc. 45, 99 (1949).

    Google Scholar 

  14. E. Wigner, “Quantum-mechanical distribution functions revisited,” in Perspectives in Quantum Theory, W. Yourgrau and A. van der Merwe, eds. (M.I.T. Press, Cambridge, MA, 1971).

    Google Scholar 

  15. M. Hillery, R. F. O'Connell, M. O. Scully, and E. P. Wigner, “Distribution functions in physics: Fundamentals,” Phys. Rep. 106, 121 (1984).

    Google Scholar 

  16. V. V. Dodonov, E. V. Kurmyshev, and V. I. Man'ko, “Generalized uncertainty relation and correlated coherent states,” Phys. Lett. A 79, 150 (1980).

    Google Scholar 

  17. L. Cohen and Y. I. Zaparovanny, “Positive quantum joint distributions,” J. Math. Phys. 21, 794 (1980).

    Google Scholar 

  18. L. Cohen, “Probability distributions with given multivariate marginals,” J. Math. Phys. 25, 2402 (1984).

    Google Scholar 

  19. H. Margenau and N. Hill, “Correlation between measurement in quantum theory,” Prog. Theor. Phys. 26, 722 (1961).

    Google Scholar 

  20. F. H. Frohner, “Missing link between probability theory and quantum mechanics: The Riesz-Fejer theorem,” Z. Naturforsch. 53a, 637 (1998).

    Google Scholar 

  21. M. Božic´ and Z. Maric´, “Probabilities of de Broglie's trajectories in Mach-Zehnder and in neutron interferometers,” Phys. Lett. A 158, 33 (1991).

    Google Scholar 

  22. M. Božic´ and Z. Maric´, “Compatible statistical interpretation of a wave packet,” Found. Phys. 25, 159 (1995).

    Google Scholar 

  23. M. Božic´ and Z. Maric´, “Quantum interference, quantum theory of measurement and (in) completeness of quantum mechanics,” Found. Phys. 28, 415 (1998).

    Google Scholar 

  24. H. Kaiser, R. Clothier, S. A. Werner, H. Rauch, and H. Wolwitsch, “Coherence and spectral filtering in neutron interferometry,” Phys. Rev. 45, 31 (1992).

    Google Scholar 

  25. M. Božic´ and D. Arsenovic´, “Comparison of Wigner's function and de Broglian probability density for a wave packet and the wave packets superposition,” in Epistemological and Experimental Perspectives on Quantum Physics, D. Greenberger et al., eds. (Kluwer Academic, Dordrecht, 1999), p. 225.

    Google Scholar 

  26. P. B. Lerner, H. Rauch, and M. Suda, “Wigner-function calculations for the coherent superposition of matter waves,” Phys. Rev. A 51, 3889 (1995).

    Google Scholar 

  27. M. Suda, “Wigner function in neutron interferometry,” Quantum Semiclass. Opt. 7, 901 (1995).

    Google Scholar 

  28. U. Janicke and M. Wilkens, “Tomography of atom beams,” J. Mod. Opt. 42, 2183 (1995).

    Google Scholar 

  29. L. de Broglie, The Current Interpretation of Wave Mechanics, A Critical Study (Elsevier, Amsterdam, 1964).

    Google Scholar 

  30. D. Bohm and J. P. Vigier, “Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations,” Phys. Rev. 96, 208 (1954).

    Google Scholar 

  31. F. Selleri, “Can an actual existence be granted to quantum waves?,” Ann. Fond. L. de Broglie 7, 45 (1982).

    Google Scholar 

  32. M. G. Raymer, M. Beck, and D. F. McAlister, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum,” Phys. Rev. Lett. 72, 1137 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vušković, L., Arsenović, D. & Božić, M. Non-Classical Behavior of Atoms in an Interferometer. Foundations of Physics 32, 1329–1346 (2002). https://doi.org/10.1023/A:1020365405788

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020365405788

Navigation