Foundations of Physics

, Volume 32, Issue 9, pp 1329–1346 | Cite as

Non-Classical Behavior of Atoms in an Interferometer

  • Lepša Vušković
  • Dušan Arsenović
  • Mirjana Božić


Using the time-dependent wave function we have studied the properties of the atomic transverse motion in an interferometer, and the cause of the non-classical behavior of atoms reported by Kurtsiefer, Pfau, and Mlynek [Nature386, 150 (1997)]. The transverse wave function is derived from the solution of the two-dimensional Schrödinger's equation, written in the form of the Fresnel–Kirchhoff diffraction integral. It is assumed that the longitudinal motion is classical. Comparing data of the space distribution and of the transverse momentum distribution in interferometers with one and two open slits, it follows that the atomic motion is influenced by the atomic matter wave and violates the laws of classical mechanics. However, the negative values of Wigner's function should not be taken as evidence that the atoms in an interferometer violate the classical statistical law of the addition of positive probabilities. This inference follows from the comparison of properties of Wigner's function and of the de Broglian probability density in phase space.

atomic interference compatible statistical interpretation (non)violation of the classical probability laws Wigner's function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ch. Kurtsiefer, T. Pfau, and J. Mlynek, “Measurement of the Wigner function of an ensemble of helium atoms,” Nature 386, 150 (1997).Google Scholar
  2. 2.
    T. Pfau and Ch. Kurtsiefer, “Partial reconstruction of the motional Wigner function of an ensemble of helium atoms,” J. Modern Opt. 44, 2551 (1997).Google Scholar
  3. 3.
    D. Leibfried, T. Pfau, and C. Monroe, “Shadows and mirrors: Reconstructing quantum states of atom motion,” Physics Today p. 22 (April 1998).Google Scholar
  4. 4.
    S. I. Tomonaga, Quantum Mechanics, Vol. II (North-Holland, Amsterdam, 1962).Google Scholar
  5. 5.
    W. H. Zurek, “Decoherence and the transition from quantum to classical,” Physics Today p. 36 (October 1991).Google Scholar
  6. 6.
    R. Bonifacio and S. Olivares, “Young's experiment, Schrödinger's spread and spontaneous intrinsic decoherence,” in Proceedings 3rd Workshop on Mysteries, Puzzles and Paradoxes in Quantum Mechanics, R. Bonifacio et al., eds. Z. Naturforsch. 56a, 41 (2001)Google Scholar
  7. 7.
    M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1965).Google Scholar
  8. 8.
    A. Zeilinger, R. Gaehler, C. G. Shull, and W. Treimer, “Experimental status and recent results of neutron interference optics,” ''Neutron Scattering'' Argonne National Laboratory Conference (1981): American Institute of Physics Conference Proceedings No. 89 (New York, 1982).Google Scholar
  9. 9.
    M. Božic´, D. Arsenovic´, and L. Vuškovic´, “Transverse momentum distribution of atoms in an interferometer,” Z. Naturforsch. 56a, 173 (2001).Google Scholar
  10. 10.
    D. Arsenovic´, M. Božic´, and L. Vučkovic´, “Is the classical law of the addition of probabilities violated in quantum interference?,” J. Opt. B: Quantum Semiclass. Opt. 4, S358 (2002).Google Scholar
  11. 11.
    E. Hecht, Optics (Addison-Wesley, Reading, MA, 1987).Google Scholar
  12. 12.
    E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749 (1932).Google Scholar
  13. 13.
    J. E. Moyal, “Quantum mechanics as a statistical theory,” Proc. Cambridge Phil. Soc. 45, 99 (1949).Google Scholar
  14. 14.
    E. Wigner, “Quantum-mechanical distribution functions revisited,” in Perspectives in Quantum Theory, W. Yourgrau and A. van der Merwe, eds. (M.I.T. Press, Cambridge, MA, 1971).Google Scholar
  15. 15.
    M. Hillery, R. F. O'Connell, M. O. Scully, and E. P. Wigner, “Distribution functions in physics: Fundamentals,” Phys. Rep. 106, 121 (1984).Google Scholar
  16. 16.
    V. V. Dodonov, E. V. Kurmyshev, and V. I. Man'ko, “Generalized uncertainty relation and correlated coherent states,” Phys. Lett. A 79, 150 (1980).Google Scholar
  17. 17.
    L. Cohen and Y. I. Zaparovanny, “Positive quantum joint distributions,” J. Math. Phys. 21, 794 (1980).Google Scholar
  18. 18.
    L. Cohen, “Probability distributions with given multivariate marginals,” J. Math. Phys. 25, 2402 (1984).Google Scholar
  19. 19.
    H. Margenau and N. Hill, “Correlation between measurement in quantum theory,” Prog. Theor. Phys. 26, 722 (1961).Google Scholar
  20. 20.
    F. H. Frohner, “Missing link between probability theory and quantum mechanics: The Riesz-Fejer theorem,” Z. Naturforsch. 53a, 637 (1998).Google Scholar
  21. 21.
    M. Božic´ and Z. Maric´, “Probabilities of de Broglie's trajectories in Mach-Zehnder and in neutron interferometers,” Phys. Lett. A 158, 33 (1991).Google Scholar
  22. 22.
    M. Božic´ and Z. Maric´, “Compatible statistical interpretation of a wave packet,” Found. Phys. 25, 159 (1995).Google Scholar
  23. 23.
    M. Božic´ and Z. Maric´, “Quantum interference, quantum theory of measurement and (in) completeness of quantum mechanics,” Found. Phys. 28, 415 (1998).Google Scholar
  24. 24.
    H. Kaiser, R. Clothier, S. A. Werner, H. Rauch, and H. Wolwitsch, “Coherence and spectral filtering in neutron interferometry,” Phys. Rev. 45, 31 (1992).Google Scholar
  25. 25.
    M. Božic´ and D. Arsenovic´, “Comparison of Wigner's function and de Broglian probability density for a wave packet and the wave packets superposition,” in Epistemological and Experimental Perspectives on Quantum Physics, D. Greenberger et al., eds. (Kluwer Academic, Dordrecht, 1999), p. 225.Google Scholar
  26. 26.
    P. B. Lerner, H. Rauch, and M. Suda, “Wigner-function calculations for the coherent superposition of matter waves,” Phys. Rev. A 51, 3889 (1995).Google Scholar
  27. 27.
    M. Suda, “Wigner function in neutron interferometry,” Quantum Semiclass. Opt. 7, 901 (1995).Google Scholar
  28. 28.
    U. Janicke and M. Wilkens, “Tomography of atom beams,” J. Mod. Opt. 42, 2183 (1995).Google Scholar
  29. 29.
    L. de Broglie, The Current Interpretation of Wave Mechanics, A Critical Study (Elsevier, Amsterdam, 1964).Google Scholar
  30. 30.
    D. Bohm and J. P. Vigier, “Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations,” Phys. Rev. 96, 208 (1954).Google Scholar
  31. 31.
    F. Selleri, “Can an actual existence be granted to quantum waves?,” Ann. Fond. L. de Broglie 7, 45 (1982).Google Scholar
  32. 32.
    M. G. Raymer, M. Beck, and D. F. McAlister, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum,” Phys. Rev. Lett. 72, 1137 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Lepša Vušković
    • 1
  • Dušan Arsenović
    • 2
  • Mirjana Božić
    • 2
  1. 1.Department of PhysicsOld Dominion UniversityNorfolk
  2. 2.Institute of PhysicsBelgradeYugoslavia

Personalised recommendations