Foundations of Physics

, Volume 32, Issue 9, pp 1459–1483 | Cite as

On the Occurrence of Mass in Field Theory

  • Giampiero Esposito


This paper proves that it is possible to build a Lagrangian for quantum electrodynamics which makes it explicit that the photon mass is eventually set to zero in the physical part on observational ground. Gauge independence is achieved upon considering the joint effect of gauge-averaging term and ghost fields. It remains possible to obtain a counterterm Lagrangian where the only non-gauge-invariant term is proportional to the squared divergence of the potential, while the photon propagator in momentum space falls off like k−2 at large k which indeed agrees with perturbative renormalizability. The resulting radiative corrections to the Coulomb potential in QED are also shown to be gauge-independent. The experience acquired with quantum electrodynamics is used to investigate properties and problems of the extension of such ideas to non-Abelian gauge theories.

quantum electrodynamics path integrals perturbative renormalization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. W. Higgs, “Broken symmetries and the masses of gauge bosons,” Phys. Rev. Lett. 13, 508 (1964); ''Spontaneous symmetry breakdown without massless bosons,” Phys. Rev. 145, 1156 (1966).Google Scholar
  2. 2.
    S. Heinemeyer and G. Weiglein, “Higgs-mass predictions and electroweak precision observables in the standard model and the MSSM,” Nucl. Phys. Proc. Suppl. 89, 216 (2000).Google Scholar
  3. 3.
    S. L. Glashow, “Towards a unified theory: threads in a tapestry,” Rev. Mod. Phys. 52, 539 (1980).Google Scholar
  4. 4.
    A. Salam, “Grand unification of fundamental forces,” Rev. Mod. Phys. 52, 525 (1980).Google Scholar
  5. 5.
    S. Weinberg, “Conceptual foundations of the unified theory of weak and electromagnetic interactions,” Rev. Mod. Phys. 52, 515 (1980).Google Scholar
  6. 6.
    B. S. DeWitt, Dynamical Theory of Groups and Fields (Gordon & Breach, New York, 1965).Google Scholar
  7. 7.
    B. S. DeWitt, “The space-time approach to quantum field theory,” in Relativity, Groups and Topology II, B. S. DeWitt and R. L. Stora, eds. (North-Holland, Amsterdam, 1984).Google Scholar
  8. 8.
    I. G. Avramidi and G. Esposito, “Gauge theories on manifolds with boundary,” Commun. Math. Phys. 200, 495 (1999).Google Scholar
  9. 9.
    G. Esposito, “Non-local boundary conditions in Euclidean quantum gravity,” Class. Quantum Grav. 16, 1113 (1999).Google Scholar
  10. 10.
    G. Esposito, “New kernels in quantum gravity,” Class. Quantum Grav. 16, 3999 (1999).Google Scholar
  11. 11.
    G. Esposito and C. Stornaiolo, “Non-locality and ellipticity in a gauge-invariant quantization,” Int. J. Mod. Phys. A 15, 449 (2000).Google Scholar
  12. 12.
    G. Esposito, “Boundary operators in quantum field theory,” Int. J. Mod. Phys. A 15, 4539 (2000).Google Scholar
  13. 13.
    L. Lorenz, “On the identity of the vibrations of light with electrical currents,” Phil. Mag. 34, 287 (1867). E. T. Whittaker, The History of the Theories of Aether and Electricity (Longman, London, 1910).Google Scholar
  14. 14.
    P. K. Townsend, “Cosmological constant in supergravity,” Phys. Rev. D 15, 2802 (1977).Google Scholar
  15. 15.
    C. Becchi, A. Rouet, and R. Stora, “Renormalization of the Abelian Higgs-Kibble model,” Commun. Math. Phys. 42, 127 (1975).Google Scholar
  16. 16.
    C. Becchi, A. Rouet, and R. Stora, “Renormalization of gauge theories,” Ann. Phys. (N. Y.) 98, 287 (1976).Google Scholar
  17. 17.
    B. S. DeWitt, “Quantum gravity: The new synthesis,” in General Relativity, an Einstein Centenary Survey, S. W. Hawking and W. Israel, eds. (Cambridge University Press, Cambridge, 1979).Google Scholar
  18. 18.
    J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon Press, Oxford, 1989). S. Weinberg, The Quantum Theory of Fields. Vol. I (Cambridge University Press, Cambridge, 1996). R. Ticciati, Quantum Field Theory for Mathematicians (Cambridge University Press, Cambridge, 1999).Google Scholar
  19. 19.
    J. H. Lowenstein and B. Schroer, “Gauge invariance and Ward identities in a massivevector-meson model,” Phys. Rev. D 6, 1553 (1972). C. Itzykson and J. B. Zuber, Quantum Field Theory (McGraw-Hill, New York, 1985).Google Scholar
  20. 20.
    L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Relativistic Quantum Theory, Vol. 4 of Course of Theoretical Physics (Pergamon Press, Oxford, 1971). V. N. Gribov and J. Nyiri, Quantum Electrodynamics (Cambridge University Press, Cambridge, 2001).Google Scholar
  21. 21.
    L. D. Faddeev and V. Popov, “Feynman diagrams for the Yang-Mills field,” Phys. Lett. B 25, 29 (1967).Google Scholar
  22. 22.
    A. S. Goldhaber and M. M. Nieto, “Terrestrial and extraterrestrial limits on the photon mass,” Rev. Mod. Phys. 43, 277 (1971).Google Scholar
  23. 23.
    J. V. Hollweg, “Improved limit on photon rest mass,” Phys. Rev. Lett. 32, 961 (1974).Google Scholar
  24. 24.
    L. Davis Jr., A. S. Goldhaber, and M. M. Nieto, “Limit on the photon mass deduced from Pioneer-10 observation's of Jupiter's magnetic field,” Phys. Rev. Lett. 35, 1402 (1975).Google Scholar
  25. 25.
    G. W. Wilson, “High Mass Photon Pairs at LEP,” in Marseille 1993, High Energy Physics (1993) 285.Google Scholar
  26. 26.
    J. T. Mendonca, A. M. Martins, and A. Guerreiro, “Field quantization in a plasma: Photon mass and charge,” Phys. Rev. E 62, 2989 (2000).Google Scholar
  27. 27.
    P. Abreu et al., “Search for the standard model Higgs boson at LEP in the year 2001,” Phys. Lett. B 499, 23 (2001).Google Scholar
  28. 28.
    J. Ellis, G. Ganis, D. V. Nanopoulos, and K. A. Olive, “What if the Higgs boson weighs 115 GeV?,” Phys. Lett. B 502, 171 (2001).Google Scholar
  29. 29.
    M. Acciarri et al., “Search for neutral Higgs bosons of the minimal supersymmetric standard model in e+e- interactions at 's=192–202 GeV,” Phys. Lett. B 503, 21 (2001).Google Scholar
  30. 30.
    M. Acciarri et al., “Search for the standard model Higgs boson in e+e--collisions at 's up to 202 GeV,” Phys. Lett. B 508, 225 (2001).Google Scholar
  31. 31.
    P. Achard et al., “Standard model Higgs boson with the L3 experiment at LEP,” Phys. Lett. B 517, 319 (2001).Google Scholar
  32. 32.
    J. Erler, “The probability density of the Higgs boson mass,” Phys. Rev. D 63, 071301 (2001).Google Scholar
  33. 33.
    V. N. Gribov, “Quantization of non-Abelian gauge theories,” Nucl. Phys. B 139, 1 (1978).Google Scholar
  34. 34.
    V. N. Gribov, “Higgs and top quark masses in the standard model without elementary Higgs boson,” Phys. Lett. B 336, 243 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Giampiero Esposito
    • 1
    • 2
  1. 1.INFN, Sezione di NapoliComplesso Universitario di Monte S. AngeloNapoliItaly
  2. 2.Dipartimento di Scienze FisicheUniversità di Napoli “Federico II,” Complesso Universitario di Monte S. AngeloNapoliItaly

Personalised recommendations