Skip to main content
Log in

Bound States in Quantum Electrodynamics: Theory and Application

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The basic methods that have been used for describing bound-state quantum electrodynamics are described and critically discussed. These include the external field approximation, the quasi-potential approaches, the effective potential approach, the Bethe–Salpeter method, and the three-dimensional equations of Lepage and other workers. Other methods less frequently used but of some intrinsic interest such as applications of the Duffin–Kemmer equation are also described. A comparison of the strengths and shortcomings of these various approaches is included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. We draw freely from D. A. Owen, Proceedings of the Workshop on Quantum Infrared Physics, H. Fried and B. Müller, eds. (World Scientific, Singapore, 1995), pp. 244–261.

    Google Scholar 

  2. E. Salpeter, Phys. Rev. 87, 328 (1952).

    Google Scholar 

  3. Particle Properties Data Booklet (North-Holland, Amsterdam, 1988).

  4. In theory, the energies of states which are not stable are branch points of the Green's function. However, perturbatively, they are seen as simple poles and the effects of their analytic properties are taken into account perturbatively. Formally, the homogeneous Bethe-Salpeter equation can be obtained in the usual way noting the product to two single particle dressed propagators have energy greater or equal to the sum of their masses which is unaffected by the existence of cuts. See also K. Nishijima, Phys. Rev. 111, 995 (1958) for a proof that stable states have simple poles.

  5. G. Breit, Phys. Rev. 34, 553 (1929); 36, 383 (1930); 39 (1932).

    Google Scholar 

  6. W. Barker and F. Glover, Phys. Rev. 99, 317 (1955).

    Google Scholar 

  7. E. Salpeter and H. Bethe, Phys. Rev. 84, 1232 (1951), J. Schwinger, Proc. Natl. Acad. Sci. (U.S.A.) 37, 452 (1951). M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).

    Google Scholar 

  8. P. Roman, Introduction to Quantum Field Theory (Wiley, New York 1969).

    Google Scholar 

  9. D. A. Owen, “Corrections to the Positronium Hyperfine Structure of Order α2 ln α-1,” JHU thesis, 1970, unpublished.

  10. R. Karplus and A. Klein, Phys. Rev. 87, 848 (1952). T. Fulton and P. Martin, Phys. Rev. 95, 811 (1954); for further details and references, see D. A. Owen, Topical Seminar on Electromagnetic Interactions (ICTP Trieste IC/71/140).

    Google Scholar 

  11. D. A. Owen, Phys. Rev. D 42, 2534 (1990). M. Halpert and D. A. Owen, J. Phys. G 20, 51 (1994). D. A. Owen, Found. Phys. 24, 273 (1994).

    Google Scholar 

  12. F. Gross, Phys. Rev. 186, 1448 (1969).

    Google Scholar 

  13. J. Gorelick and H. Grotch, J. Phys. G 3, 751 (1977).

    Google Scholar 

  14. G. Lepage, Phys. Rev. A 16, 863 (1977).

    Google Scholar 

  15. R. Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966).

    Google Scholar 

  16. F. Gross, Phys. Rev. 186, 1448 (1969).

    Google Scholar 

  17. A. Klein and B. Lee, Phys. Rev. D 10, 4308 (1974). A. Logunov and A. Tavkhelidze, Nuovo Cim. 29, 380 (1963).

    Google Scholar 

  18. H. Grotch and D. Yennie, Rev. Mod. Phys. 41, 350 (1969).

    Google Scholar 

  19. C. Fronsdal and R. Huff, Phys. Rev. D 3, 933 (1971).

    Google Scholar 

  20. H. Bethe and E. Salpeter, Phys. Rev. 84, 1232 (1951). J. Schwinger, Proc. Acad. Sci. 31, 452 (1951).

    Google Scholar 

  21. If in Eq. (3.54) \(\hat \Delta _1 S_{F_2 } \) instead of \(\hat \Delta _1 \Delta _{F_2 } \), then instead of Eq. (3.66), one has G= [S-1 F2 -W]-1.

  22. Inadvertantly, undressed propagators are written. Here, we have corrected this oversight.

  23. W. E. Caswell and G. P. Lepage, Phys. Lett. B 167, 437 (1986).

    Google Scholar 

  24. R. Blankenbecler and R. Sugar, Phys. Rev. 142, 1052 (1966).

    Google Scholar 

  25. In most of the general cases, we will consider both particles to be fermions as these are the most common systems that one encounters plus the possibility that all scalar particles, in fact, may be composite systems of fermions.

  26. J. Bjorken and S. Drell, Relativistic Quantum Fields (McGraw-Hill, 1965) (cf. Chap. 19).

  27. In this express and those that follow, we use matrix notation. Thus, in both the numerator and denominator, there are implied integrations.

  28. G. Erickson and D. Yennie, Ann. Phys. (N.Y.) 35, 271, 447 (1965).

    Google Scholar 

  29. J. Fox and D. Yennie, Ann. Phys. (N.Y.) 81 (1973).

  30. A. Logunov and A. Tavkhelidze, Nuovo Cim. 29, 380 (1963). A. Logunov et al., Nuovo Cim. 30, 134 (1963).

    Google Scholar 

  31. V. A. Rizov, Ann. Phys. 165, 59 (1985).

    Google Scholar 

  32. I. T. Todorov, Rep. Math. Phys. 24, 95 (1986).

    Google Scholar 

  33. V. A. Rizov, I. T. Todorov, and B. L. Aneva, Nucl. Phys. B 98, 447 (1975).

    Google Scholar 

  34. R. Duffin, Phys. Rev. 54, 1114 (1938). N. Kemmer, Proc. of Roy. Soc. (London) A 173, 91 (1939).

    Google Scholar 

  35. A. Akhiezer and V. Berestetskii, Quantum Electrodynamics (Interscience, 1965).

  36. Y. Nedjadi and R. C. Barrett, J. Phys. G 19, 87 (1993); preprint, University of Surrey ''Solutions of the central field problem for a Duffin-Kemmer-Petiau vector boson.''

    Google Scholar 

  37. Chapter 9 of the reference given in footnote 35.

  38. Private correspondence from R. Barrett.

  39. I. Tamm, J. Phys. (U.S.S.R.) 9, 449 (1945). S. M. Dancoff, Phys. Rev. 78, 382 (1950).

    Google Scholar 

  40. H. Bethe and E. Salpeter, Quantum Mechanics of One-and Two-Electron Systems (Springer, Berlin 1957).

    Google Scholar 

  41. Private communication, M. Eides.

  42. The form of this transformation is found in most field theory books, for example, J. Bjorken and S. Drell, Relativistic Quantum Fields (McGraw-Hill, 1965).

  43. V. Rizov and I. Todorov, Sov. J. Part. Nucl. 6, 269 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grotch, H., Owen, D.A. Bound States in Quantum Electrodynamics: Theory and Application. Foundations of Physics 32, 1419–1457 (2002). https://doi.org/10.1023/A:1020311923535

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020311923535

Navigation