Advertisement

Foundations of Physics

, Volume 32, Issue 9, pp 1419–1457 | Cite as

Bound States in Quantum Electrodynamics: Theory and Application

  • H. Grotch
  • D. A. Owen
Article

Abstract

The basic methods that have been used for describing bound-state quantum electrodynamics are described and critically discussed. These include the external field approximation, the quasi-potential approaches, the effective potential approach, the Bethe–Salpeter method, and the three-dimensional equations of Lepage and other workers. Other methods less frequently used but of some intrinsic interest such as applications of the Duffin–Kemmer equation are also described. A comparison of the strengths and shortcomings of these various approaches is included.

bound states quantum electrodynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    We draw freely from D. A. Owen, Proceedings of the Workshop on Quantum Infrared Physics, H. Fried and B. Müller, eds. (World Scientific, Singapore, 1995), pp. 244–261.Google Scholar
  2. 2.
    E. Salpeter, Phys. Rev. 87, 328 (1952).Google Scholar
  3. 3.
    Particle Properties Data Booklet (North-Holland, Amsterdam, 1988).Google Scholar
  4. 4.
    In theory, the energies of states which are not stable are branch points of the Green's function. However, perturbatively, they are seen as simple poles and the effects of their analytic properties are taken into account perturbatively. Formally, the homogeneous Bethe-Salpeter equation can be obtained in the usual way noting the product to two single particle dressed propagators have energy greater or equal to the sum of their masses which is unaffected by the existence of cuts. See also K. Nishijima, Phys. Rev. 111, 995 (1958) for a proof that stable states have simple poles.Google Scholar
  5. 5.
    G. Breit, Phys. Rev. 34, 553 (1929); 36, 383 (1930); 39 (1932).Google Scholar
  6. 6.
    W. Barker and F. Glover, Phys. Rev. 99, 317 (1955).Google Scholar
  7. 7.
    E. Salpeter and H. Bethe, Phys. Rev. 84, 1232 (1951), J. Schwinger, Proc. Natl. Acad. Sci. (U.S.A.) 37, 452 (1951). M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).Google Scholar
  8. 8.
    P. Roman, Introduction to Quantum Field Theory (Wiley, New York 1969).Google Scholar
  9. 9.
    D. A. Owen, “Corrections to the Positronium Hyperfine Structure of Order α2 ln α-1,” JHU thesis, 1970, unpublished.Google Scholar
  10. 10.
    R. Karplus and A. Klein, Phys. Rev. 87, 848 (1952). T. Fulton and P. Martin, Phys. Rev. 95, 811 (1954); for further details and references, see D. A. Owen, Topical Seminar on Electromagnetic Interactions (ICTP Trieste IC/71/140).Google Scholar
  11. 11.
    D. A. Owen, Phys. Rev. D 42, 2534 (1990). M. Halpert and D. A. Owen, J. Phys. G 20, 51 (1994). D. A. Owen, Found. Phys. 24, 273 (1994).Google Scholar
  12. 12.
    F. Gross, Phys. Rev. 186, 1448 (1969).Google Scholar
  13. 13.
    J. Gorelick and H. Grotch, J. Phys. G 3, 751 (1977).Google Scholar
  14. 14.
    G. Lepage, Phys. Rev. A 16, 863 (1977).Google Scholar
  15. 15.
    R. Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966).Google Scholar
  16. 16.
    F. Gross, Phys. Rev. 186, 1448 (1969).Google Scholar
  17. 17.
    A. Klein and B. Lee, Phys. Rev. D 10, 4308 (1974). A. Logunov and A. Tavkhelidze, Nuovo Cim. 29, 380 (1963).Google Scholar
  18. 18.
    H. Grotch and D. Yennie, Rev. Mod. Phys. 41, 350 (1969).Google Scholar
  19. 19.
    C. Fronsdal and R. Huff, Phys. Rev. D 3, 933 (1971).Google Scholar
  20. 20.
    H. Bethe and E. Salpeter, Phys. Rev. 84, 1232 (1951). J. Schwinger, Proc. Acad. Sci. 31, 452 (1951).Google Scholar
  21. 21.
    If in Eq. (3.54) \(\hat \Delta _1 S_{F_2 } \) instead of \(\hat \Delta _1 \Delta _{F_2 } \), then instead of Eq. (3.66), one has G= [S-1 F2 -W]-1.Google Scholar
  22. 22.
    Inadvertantly, undressed propagators are written. Here, we have corrected this oversight.Google Scholar
  23. 23.
    W. E. Caswell and G. P. Lepage, Phys. Lett. B 167, 437 (1986).Google Scholar
  24. 24.
    R. Blankenbecler and R. Sugar, Phys. Rev. 142, 1052 (1966).Google Scholar
  25. 25.
    In most of the general cases, we will consider both particles to be fermions as these are the most common systems that one encounters plus the possibility that all scalar particles, in fact, may be composite systems of fermions.Google Scholar
  26. 26.
    J. Bjorken and S. Drell, Relativistic Quantum Fields (McGraw-Hill, 1965) (cf. Chap. 19).Google Scholar
  27. 27.
    In this express and those that follow, we use matrix notation. Thus, in both the numerator and denominator, there are implied integrations.Google Scholar
  28. 28.
    G. Erickson and D. Yennie, Ann. Phys. (N.Y.) 35, 271, 447 (1965).Google Scholar
  29. 29.
    J. Fox and D. Yennie, Ann. Phys. (N.Y.) 81 (1973).Google Scholar
  30. 30.
    A. Logunov and A. Tavkhelidze, Nuovo Cim. 29, 380 (1963). A. Logunov et al., Nuovo Cim. 30, 134 (1963).Google Scholar
  31. 31.
    V. A. Rizov, Ann. Phys. 165, 59 (1985).Google Scholar
  32. 32.
    I. T. Todorov, Rep. Math. Phys. 24, 95 (1986).Google Scholar
  33. 33.
    V. A. Rizov, I. T. Todorov, and B. L. Aneva, Nucl. Phys. B 98, 447 (1975).Google Scholar
  34. 34.
    R. Duffin, Phys. Rev. 54, 1114 (1938). N. Kemmer, Proc. of Roy. Soc. (London) A 173, 91 (1939).Google Scholar
  35. 35.
    A. Akhiezer and V. Berestetskii, Quantum Electrodynamics (Interscience, 1965).Google Scholar
  36. 36.
    Y. Nedjadi and R. C. Barrett, J. Phys. G 19, 87 (1993); preprint, University of Surrey ''Solutions of the central field problem for a Duffin-Kemmer-Petiau vector boson.''Google Scholar
  37. 37.
    Chapter 9 of the reference given in footnote 35.Google Scholar
  38. 38.
    Private correspondence from R. Barrett.Google Scholar
  39. 39.
    I. Tamm, J. Phys. (U.S.S.R.) 9, 449 (1945). S. M. Dancoff, Phys. Rev. 78, 382 (1950).Google Scholar
  40. 40.
    H. Bethe and E. Salpeter, Quantum Mechanics of One-and Two-Electron Systems (Springer, Berlin 1957).Google Scholar
  41. 41.
    Private communication, M. Eides.Google Scholar
  42. 42.
    The form of this transformation is found in most field theory books, for example, J. Bjorken and S. Drell, Relativistic Quantum Fields (McGraw-Hill, 1965).Google Scholar
  43. 43.
    V. Rizov and I. Todorov, Sov. J. Part. Nucl. 6, 269 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • H. Grotch
    • 1
  • D. A. Owen
    • 2
  1. 1.Physics DepartmentThe University of KentuckyLexington
  2. 2.Physics DepartmentBen Gurion UniversityBeer ShevaIsrael

Personalised recommendations