Skip to main content
Log in

Metric Density and Quasimobius Mappings

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We study the notion of μ-density of metric spaces which was introduced by V. Aseev and D. Trotsenko. Interrelation between μ-density and homogeneous density is established. We also characterize μ-dense spaces as “arcwise” connected metric spaces in which “arcs” are the quasimobius images of the middle-third Cantor set. Finally, we characterize quasiconformal self-mappings of EquationSource % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafSyhHeQbai% aaaaa!3766! n in terms of μ-density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aseev V. V. and Trotsenko D. A., “Quasisymmetric embeddings, quadruples of points, and distortions of moduli,” Sibirsk. Mat. Zh., 28, No. 4, 32-38 (1987).

    Google Scholar 

  2. Väisälä J., “Quasi-symmetric embeddings in Euclidean spaces,” Trans. Amer. Math. Soc., 264, 191-204 (1981).

    Google Scholar 

  3. Ibragimov Z., “Quasimöbius embeddings on µ-dense sets,” in: Mathematical Analysis and Differential Equations, Novosibirsk Univ. Press, Novosibirsk, 1991, pp. 44-52.

    Google Scholar 

  4. Tukia P. and Väisälä J., “Quasisymmetric embeddings of metric spaces,” Ann. Acad. Sci. Fenn. Ser. AI Math., 5, 97-114 (1980).

    Google Scholar 

  5. Järvi P. and Vourinen M., “Uniformly perfect sets and quasiregular mappings,” J. London Math. Soc. (2), 54, 515-529 (1996).

    Google Scholar 

  6. Väisälä J., “Quasimöbius maps,” J. Anal. Math., 44, 218-234 (1984/85).

    Google Scholar 

  7. Hutchinson J., “Fractals and self-similarity,” Indiana Univ. Math. J., 30, 713-747 (1981).

    Google Scholar 

  8. Trotsenko D. and Väisälä J., “Upper sets and quasisymmetric maps,” Ann. Acad. Sci. Fenn. Math., 24, No. 2, 465-488 (1999).

    Google Scholar 

  9. Väisälä J., Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Math., Springer-Verlag, New York (1971).

    Google Scholar 

  10. Gehring F. W., “Symmetrization of rings in space,” Trans. Amer. Math. Soc., 101, No. 3, 499-519 (1961).

    Google Scholar 

  11. Gehring F. W., “Rings and quasiconformal mappings in space,” Trans. Amer. Math. Soc., 103, No. 3, 353-393 (1962).

    Google Scholar 

  12. Gehring F. W., “Quasiconformal mappings,” in: Complex Analysis and Its Applications. II, International Atomic Energy Agency, Vienna, 1976, pp. 213-268.

    Google Scholar 

  13. Caraman P., “Characterization of the quasiconformality by arc families of extremal length zero,” Ann. Acad. Sci. Fenn. Ser. A I, 528, 1-10 (1973).

    Google Scholar 

  14. Väisälä J., “On quasiconformal mappings in space,” Ann. Acad. Sci. Fenn. Ser. A I, 298, 1-35 (1961).

    Google Scholar 

  15. Aseev V. V., “Continuity of conformal capacity for condensers with uniformly perfect plates,” Sibirsk. Mat. Zh., 40, No. 2, 243-253 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibragimov, Z. Metric Density and Quasimobius Mappings. Siberian Mathematical Journal 43, 812–821 (2002). https://doi.org/10.1023/A:1020194404901

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020194404901

Navigation