Skip to main content
Log in

The role of vitamins and amino acids on hybridoma growth and monoclonal antibody production

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

A balanced supplementation method was applied to develop a serum and protein- free medium supporting hybridoma cell batch culture. The aim was to improve systematically the initial formulation of the medium to prevent limitations due to unbalanced concentrations of vitamins and amino acids. In a first step, supplementation of the basal formulation with 13 amino acids, led to an increase of the specific IgA production rate from 0.60 to 1.07 pg cell−1 h−1. The specific growth rate remained unchanged, but the supplementation enabled maintenance of high cell viability during the stationary phase of batch cultures for some 70 h. Since IgA production was not growth- related, this resulted in an approximately4-fold increase in the final IgA concentration, from 26.6 to 100.2 mgl−1. In a second step, the liposoluble vitamins E and K3 were added to the medium formulation. Although this induced a slightly higher maximal cell concentration, it was followed by a sharp decline phase with the specific IgA production rate falling to 0.47 pg cell−1 h−1. However, by applying a second cycle of balanced supplementation with amino acids this decline phase could be reduced and a high cell viability maintained for over 300 h of culture. In this vitamin- and amino acid- supplemented medium, the specific IgA production rate reached a value of 1.10 pg cell−1h−1 with a final IgA concentration of 129.8 mgl−1. The latter represents an increase of approximately5-fold compared to the non- supplemented basal medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baker H., DeAngelis B. and Frank O. 1988. Vitamins and other metabolites in various sera commonly used for cell culturing. Experientia 44: 1007–1010.

    Article  PubMed  CAS  Google Scholar 

  • Banik G.G. and Heath C.A. 1996. High-density hybridoma perfusion culture - limitation vs inhibition. Appl. Biochem. Biotechnol. 61: 211–229.

    PubMed  CAS  Google Scholar 

  • Barman H.K. and Rajput Y.S. 1993. Serum-free and serum-containing media for hybridoma culture. J. Sci. Industr. Res. 52: 803–807.

    CAS  Google Scholar 

  • Barnes D. and Sato G. 1980. Methods for growth of cultured cells in serum-free medium. Anal. Biochem. 102: 255–270.

    Article  PubMed  CAS  Google Scholar 

  • Chen Z., Ke Y. and Chen Y. 1993. A serum-free medium for hybridoma cell culture. Cytotechnology 11: 169–174.

    Article  PubMed  CAS  Google Scholar 

  • Chua F., Oh S.K.W., Yap M. and Teo W.K. 1994. Enhanced IgG production in eRDF media with and without serum. Methods 167: 109–119.

    CAS  Google Scholar 

  • Ducommun P., Bolzonella I., Rhiel M., Pugeaud P., Von Stockar U. and Marison I.W. 2001. On-line determination of animal cell concentration. Biotechnol. Bioeng. 72: 515–522.

    Article  PubMed  CAS  Google Scholar 

  • Duval D., Demangel C., Munier-Jolain K., Miossec S. and Geahel I. 1991. Factors controlling cell proliferation and antibody production in mouse hybridoma cells: I. influence of the amino acid supply. Biotechnol. Bioeng. 38: 561–570.

    Article  CAS  PubMed  Google Scholar 

  • Engström W. and Zetterberg A. 1984. The relationship between purines, pyrimidines, nucleosides, and glutamine for fibroblast cell proliferation. J. Cell. Physiol. 120: 233–241.

    Article  PubMed  Google Scholar 

  • Evans V.J., Bryant J.C., Kerr H.A. and Schilling E.L. 1964. Chemically defined media for cultivation of long-term cell strains from four mammalian species. Exp. Cell. Res. 36: 439–474.

    Article  PubMed  CAS  Google Scholar 

  • Geaugey V., Duvall D., Geahel I., Marc A. and Engasser J.M. 1989. Influence of amino acids on hybridoma cell viability and anti-body secretion. Cytotechnology 2: 119–129.

    Article  Google Scholar 

  • Hewlett G. 1991. Strategies for optimising serum-free media. Cytotechnology 5: 3–14.

    Article  PubMed  CAS  Google Scholar 

  • Higushi K. 1973. Cultivation of animal cells in chemically defined media, a review. Adv. Appl. Microbiol. 16: 111–136.

    Article  Google Scholar 

  • Hiller G.W., Clark D.S. and Blanch H.W. 1994. Transient responses of hybridoma cells in continuous-culture to step changes in amino-acid and vitamin concentrations. Biotechnol. Bioeng. 44: 303–321.

    Article  CAS  PubMed  Google Scholar 

  • Jo E.-C., Park H.-J., Park J.-M. and Kim K.-H. 1990. Balanced nutrient fortification enables high-density hybridoma cell culture in batch culture. Biotechnol. Bioeng. 36: 717–722.

    Article  CAS  PubMed  Google Scholar 

  • Kurano S., Kurano N., Leist C. and Fiechter A. 1990. Utilization and stability of vitamins in serum-containing and serum-free media in CHO cell culture. Cytotechnology 4: 243–250.

    Article  PubMed  CAS  Google Scholar 

  • Leist C.H., Meyer H.-P. and Fiechter A. 1990. Potential and problems of animal cells in suspension culture. J. Biotechnol. 15: 1–46.

    Article  PubMed  CAS  Google Scholar 

  • Marquis C.P., Barford J.P., Harbour C. and Fletcher A. 1996a. Carbohydrate and amino acid metabolism during batch culture of a human lymphoblastoid cell line, BTSN6. Cytotechnology 21: 121–132.

    Article  CAS  Google Scholar 

  • Marquis C.P., Barford J.P. and Harbour C. 1996b. Amino acid metabolism during batch culture of a murine hybridoma, AFP-27. Cytotechnology 21: 111–120.

    Article  CAS  Google Scholar 

  • Renard J.M., Spagnoli R., Mazier C., Salles M.F. and Mandine E. 1988. Evidence that antibody production kinetics is related to the integral of the viable cells curve in batch systems. Biotechnol. Lett. 10: 91–96.

    Article  Google Scholar 

  • Reuveny S., Velez D., Macmillan J.D. and Miller L. 1986. Factors affecting cell growth and monoclonal antibody production in stirred reactors. J. Immunol. Methods 86: 53–59.

    Article  PubMed  CAS  Google Scholar 

  • Shacter E. 1989. Serum-free media for bulk culture of hybridoma cell and the preparation of monoclonal antibodies. TIBTECH 7: 248–253.

    Google Scholar 

  • Simpson N.H., Singh R.P., Perani A., Goldenzon C. and Al-Rubeai M. 1998. In hybridoma cultures, deprivation of any single amino acid leads to apoptotic death, which is suppressed by the expression of the bcl-2 gene. Biotechnol. Bioeng. 59: 90–98.

    Article  PubMed  CAS  Google Scholar 

  • Stoll T.S., Mühlethaler K., von Stockar U. and Marison I.W. 1996. Systematic improvement of a chemically-defined protein-free medium for hybridoma growth and monoclonal antibody production. J. Biotechnol. 45: 111–123.

    Article  PubMed  CAS  Google Scholar 

  • Xie L.Z. and Wang D.I.C. 1994. Stoichiometric analysis of animal cell growth and its application in medium design. Biotechnol. Bioeng. 43: 1164–1174.

    Article  CAS  PubMed  Google Scholar 

  • Zetterberg A. and Engström W. 1981. Glutamine and the regulation of DNA replication and cell multiplication in fibroblasts. J. Cell. Physiol. 108: 365–373.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ducommun, P., Ruffieux, PA., von Stockar, U. et al. The role of vitamins and amino acids on hybridoma growth and monoclonal antibody production. Cytotechnology 37, 65–73 (2001). https://doi.org/10.1023/A:1019956013627

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019956013627

Navigation