Skip to main content
Log in

Why the Laws of Physics Are Just So

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Does a world that contains chemistry entail the validity of both the standard model of elementary particle physics and general relativity, at least as effective theories? This article shows that the answer may very well be affirmative. It further suggests that the very existence of stable, spatially extended material objects, if not the very existence of the physical world, may require the validity of these theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. F. von Weizsäcker, The Unity of Nature (Farrar, Straus & Giroux, New York, 1980).

    Google Scholar 

  2. M. K. Gaillard, P. D. Grannis, and F. J. Sciulli, “The standard model of particle physics, ” Rev. Mod. Phys. 71(2), S96–111 (1999).

    Google Scholar 

  3. E. J. Squires, “Do we live in the simplest possible interesting world?, ” Eur. J. Phys. 2, 55–57 (1981).

    Google Scholar 

  4. Steven Weinberg, Dreams of a Final Theory (Hutchinson Radius, London, 1993).

    Google Scholar 

  5. E. H. Lieb, “The stability of matter, ” Rev. Mod. Phys. 48(4), 553–569 (1976).

    Google Scholar 

  6. U. Mohrhoff, “What quantum mechanics is trying to tell us, ” Am. J. Phys. 68(8), 728–745 (2000).

    Google Scholar 

  7. U. Mohrhoff, “Objective probabilities, quantum counterfactuals, and the ABL rule— A response to R. E. Kastner, ” Am. J. Phys. 69(8), 864–873 (2001).

    Google Scholar 

  8. U. Mohrhoff, “Reflections on the spatiotemporal aspects of the quantum world, ” invited talk, Workshop on Interface of Gravitational and Quantum Realms, IUCAA, Pune, December 17–21, 2001, Mod. Phys. Lett. A 17(15–17), 1107–1122 (2002).

    Google Scholar 

  9. A. M. Gleason, “Measures on the closed subspaces of a Hilbert space, ” J. Math. Mech. 6, 885–894 (1957). The original proof is reproduced in V. S. Varadarajan, Geometry of Quantum Mechanics (Springer, Berlin, 1985).

    Google Scholar 

  10. I. Pitowsky, “Infinite and finite Gleason's theorems and the logic of indeterminacy, ” J. Math. Phys. 39(1), 218–228 (1998).

    Google Scholar 

  11. A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic, Dordrecht, 1995), p. 190.

    Google Scholar 

  12. C. A. Fuchs, “Quantum foundations in the light of quantum information, ” arXiv:quantph/ 0106166.

  13. P. Busch, “Quantum states as effect valuations: giving operational content to von Neumann's no-hidden-variables theorem, ” arXiv:quant-ph/9909073.

  14. D. I. Fivel, “How interference effects in mixtures determine the rules of quantum mechanics, ” Phys. Rev. A 50(3), 2108–2119 (1994).

    Google Scholar 

  15. U. Mohrhoff, “The world according to quantum mechanics (Or the 18 errors of Henry P. Stapp), ” Found. Phys. 32, 217 (2002).

    Google Scholar 

  16. U. Mohrhoff, “Against “knowledge”, ” arXiv:quant-ph/0009150.

  17. R. U. Sexl and H. K. Urbantke, Relativität, Gruppen, Teilchen (Springer, Vienna, 1976).

    Google Scholar 

  18. W. Franz, Quantentheorie (Springer, Berlin, 1970).

    Google Scholar 

  19. P. L. Antonelli, R. S. Ingarden, and M. Matsumoto, The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology (Kluwer Academic, Dordrecht, 1993).

    Google Scholar 

  20. R. F. Marzke and J. A. Wheeler, “Gravitation as geometry I, ” in Gravitation and Relativity, H.-Y. Chiu and W.F. Hoffman, eds. (Benjamin, New York, 1964), p. 40.

    Google Scholar 

  21. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon, Oxford, 1971).

    Google Scholar 

  22. J. P. Costella, B. H. J. McKellar, and A. A. Rawlinson, “Classical antiparticles, ” Am. J. Phys. 65(9), 835–841 (1997).

    Google Scholar 

  23. W. Marciano and H. Pagels, “Quantum chromodynamics, ” Phys. Rep. 36(3), 137–276 (1978).

    Google Scholar 

  24. E. S. Abers and B. W. Lee, “Gauge theories, ” Phys. Rep. 9(1), 1–141 (1973).

    Google Scholar 

  25. J. D. Barrow and F. J. Tipler, The Anthropic Cosmological Principle (Oxford University Press, Oxford, 1986).

    Google Scholar 

  26. D. N. Schramm and G. Steigman, “Particle accelerators test cosmological theories, ” Sci. Am. 258(6), 66 (1988).

    Google Scholar 

  27. C. J. Hogan, “Why the universe is just so, ” Rev. Mod. Phys. 72(4), 149–1161 (2000).

    Google Scholar 

  28. B. Sadoulet, “Deciphering the nature of dark matter, ” Rev. Mod. Phys. 71(2), S197–204 (1999).

    Google Scholar 

  29. J. B. Hartle and S. W. Hawking, “Wave function of the universe, ” Phys. Rev. D 28, 2960–2975 (1983).

    Google Scholar 

  30. A. Guth and P. Steinhardt, “The inflationary universe, ” in The New Physics, P. Davies, ed. (Cambridge University Press, Cambridge, 1989), pp. 34–60.

    Google Scholar 

  31. U. Mohrhoff, “Beyond the cookie cutter paradigm, ” in Consciousness and its Transformation: Papers Presented at the Second International Conference on Integral Psychology, M. Cornelissen, ed. (Sri Aurobindo International Centre of Education, Pondicherry, 2001), pp. 333–345.

    Google Scholar 

  32. U. Mohrhoff, “Quantum mechanics and the cookie cutter paradigm, ” arXiv:quantph/ 0009001.

  33. H. Georgi, “Effective quantum field theories, ” in The New Physics, P. Davies, ed. (Cambridge University Press, Cambridge, 1989), pp. 446–457.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohrhoff, U. Why the Laws of Physics Are Just So. Foundations of Physics 32, 1313–1324 (2002). https://doi.org/10.1023/A:1019727521587

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019727521587

Navigation