Skip to main content
Log in

The Observer in the Quantum Experiment

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A goal of most interpretations of quantum mechanics is to avoid the apparent intrusion of the observer into the measurement process. Such intrusion is usually seen to arise because observation somehow selects a single actuality from among the many possibilities represented by the wavefunction. The issue is typically treated in terms of the mathematical formulation of the quantum theory. We attempt to address a different manifestation of the quantum measurement problem in a theory-neutral manner. With a version of the two-slit experiment, we demonstrate that an enigma arises directly from the results of experiments. Assuming that no observable physical phenomena exist beyond those predicted by the theory, we argue that no interpretation of the quantum theory can avoid a measurement problem involving the observer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. N. D. Mermin, “What's Wrong with These Questions?”, Physics Today 54(2), 11–12 (2001).

    Google Scholar 

  2. S. Goldstein, “Quantum mechanics without observers—part one, ” Physics Today 51(3), 42–46 (1998); “Quantum mechanics without observers—part two, ” Physics Today 51(4), 38–42 (1998), and references therein. R. B. Griffiths and R. Omnès, “Consistent histories and quantum measurements, ” Physics Today 52(8), 26–31 (1999).

    Google Scholar 

  3. C. A. Fuchs and A. Peres, “Quantum theory needs no “interpretation”, ” Physics Today 53(3), 70–71 (2000).

    Google Scholar 

  4. H. P. Stapp, “Attention, intention, and will in quantum physics, ” J. Consciousness Studies 6(8–9), 143–164 (1999).

    Google Scholar 

  5. E. Aronson, Encyclopedia of Psychology 2000 (American Psychological Association, Washington, D.C).

  6. J. A. Wheeler, “Delayed-choice experiments and the Bohr-Einstein dialog, ” The American Philosophical Society and the Royal Society, Papers read at a meeting June 5, 1980.

  7. M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van der Zouw, and A. Zeilinger, “Wave-particle duality of C60 molecules, ” Nature 401(6754), 680–2 (1999).

    Google Scholar 

  8. J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo, and J. E. Lukens, “Quantum superposition of distinct macroscopic states, ” Nature 406(6791), 43–46 (2000).

    PubMed  Google Scholar 

  9. B. Julsgaard, A. Kozhekin, and E. S. Polzik, “Experimental long-lived entanglement of two macroscopic objects, ” Nature 413, 400–403 (2001).

    Google Scholar 

  10. K. Hess and W. Philipp, “Bell's theorem and the problems of decidability between the views of Einstein and Bohr, ” Proc. Nat. Acad. Sci. 98, 14228–14223 (2001).

    Google Scholar 

  11. R. Omnès, The Interpretation of Quantum Mechanics (Princeton University Press, Princeton, NJ, 1994), p. 342.

    Google Scholar 

  12. J. von Neumann, The Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, NJ, 1955; originally published 1932).

    Google Scholar 

  13. O. Ulfbeck and A. Bohr. “Genuine fortuitousness. Where did that click come from?, ” Found. Phys. 31, 757 (2001).

    Google Scholar 

  14. W. H. Zurek, “Decoherence and the transition from quantum to classical, ” Physics Today 50(10), 36–44 (1991).

    Google Scholar 

  15. W. H. Zurek, “Preferred states, predictability, classicality and the environment-induced decoherence, ” Progr. Theoret. Phys. 88(2), 282–312 (1999).

    Google Scholar 

  16. R. B. Griffiths and R. Omnès, “Consistent histories and quantum measurements, ” Physics Today 52(8), 26–31 (1999).

    Google Scholar 

  17. H. Everett, III, “'Relative state’ formulation of quantum mechanics, ” Rev. Mod. Phys. 29(3), 454–462 (1957).

    Google Scholar 

  18. E. J. Squires, “Many views of one world-an interpretation of quantum theory, ” Eur. J. Phys. 8(3), 171–173 (1987).

    Google Scholar 

  19. N. D. Mermin, “What is quantum mechanics trying to tell us?, ” Amer. J. Phys. 66(9), 753–767 (1998).

    Google Scholar 

  20. G. C. Ghirardi, A. Rimini, and T. Weber, “Unified dynamics for microscopic and macroscopic systems, ” Phys. Rev. D 34(2), 470–491 (1986).

    Google Scholar 

  21. R. Penrose, The Emperor's New Mind: Concerning Computers, Minds, and the Laws of Physics (Oxford University Press, Oxford, 1989).

    Google Scholar 

  22. H. P. Stapp, “Quantum theory and the role of mind in nature, ” Found. Phys. 31, 1465 (2001).

    Google Scholar 

  23. D. Bohm, “A suggested interpretation of the quantum theory in terms of ‘hidden’ variables, ” Phys. Rev. 85, 166–193 (1952).

    Google Scholar 

  24. J. R. Fanchi, “Quantum potential in relativistic dynamics, ” Found. Phys. 30, 1161 (2000).

    Google Scholar 

  25. D. Bohm and B. J. Hiley, The Undivided Universe (Routledge, London, 1993), p. 181.

    Google Scholar 

  26. D. Bohm, Wholeness and the Implicate Order (Routledge & Kegan Paul, London, 1980). D. Bohm and B. J. Hiley, The Undivided Universe (Routledge, London, 1993).

    Google Scholar 

  27. J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987), p. 27.

    Google Scholar 

  28. F. Wilczek, Physics Today 52(6), 11–12 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenblum, B., Kuttner, F. The Observer in the Quantum Experiment. Foundations of Physics 32, 1273–1293 (2002). https://doi.org/10.1023/A:1019723420678

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019723420678

Navigation