Skip to main content
Log in

N-glycosylation potential of maize: The human lactoferrin used as a model

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

In order to determine the N-glycosylation potential of maize, a monocotyledon expression system for the production of recombinant glycoproteins, human lactoferrin was used as a model. The human lactoferrin coding sequence was inserted into the pUC18 plasmid under control of the wheat glutenin promoter. Maize was stably transformed and recombinant lactoferrin was purified from the fourth generation seeds. Glycosylation was analysed by gas chromatography, lectin detection, glycosidase digestions and mass spectrometry. The results indicated that both N-glycosylation sites of recombinant lactoferrin are mainly substituted by typical plant paucimannose-type glycans, with β1,2-xylose and α1,3-linked fucose at the proximal N-acetylglucosamine, and that complex-type glycans with Lewisa determinants are not present in maize recombinant lactoferrin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hood EE, Jilka JM, Plant-based production of xenogenic proteins, Curr Opin Biotechnol 10, 382–6 (1999).

    Google Scholar 

  2. Doran PM, Foreign protein production in plant tissue cultures, Curr Opin Biotechnol 11, 199–204 (2000).

    Google Scholar 

  3. Mison D, Curling J, The industrial production costs of recombinant therapeutic proteins expressed in transgenic corn, Biopharm 13, 48–54 (2000).

    Google Scholar 

  4. Tacket CO, Mason HS, Losonsky G, Clements JD, Levine MM, Arntzen CJ, Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato, Nat Med 4, 607–9 (1998).

    Google Scholar 

  5. Kapusta J, Modelska A, Figlerowicz M, Pniewski T, Letellier M, Lisowa O, Yusibov V, Koprowski H, Plucienniczak A, Legocki AB, A plant-derived edible vaccine against hepatitis B virus, FASEB J 13, 1796–9 (1999).

    Google Scholar 

  6. Dieryck W, Pagnier J, Poyart C, Marden MC, Gruber V, Bournat P, Baudino S, Mérot B, Human haemoglobin from transgenic tobacco, Nature 386, 29–30 (1997).

    Google Scholar 

  7. Cramer CL, Weissenborn DL, Oishi KK, Grabau EA, Bennett S, Ponce E, Grabowski GA, Radin DN, Bioproduction of human enzymes in transgenic Tobacco. In Engineering Plants for Commercial Products and Applications, edited by Collins GB, Shepherd RJ (New York Academy of Sciences, New York, 1996), p. 62.

    Google Scholar 

  8. Ruggiero F, Exposito J-Y, Bournat P, Gruber V, Perret S, Comte J, Olagnier B, Garrone R, Theisen M, Triple helix assembly and processing of human collagen produced in transgenic tobacco plants, FEBS Letters 469, 132–6 (2000).

    Google Scholar 

  9. Hiatt AC, Cafferkey R, Bowdish K, Production of antibodies in transgenic plants, Nature 342, 76–8 (1989).

    Google Scholar 

  10. Ma JK-C, Hiatt A, Hein MB, Vine ND, Wang F, Stabila P, van Dolleweerd C, Mostov K, Lehner T, Generation and assembly of secretory antibodies in plants, Science 268, 716–9 (1995).

    Google Scholar 

  11. Lerouge P, Cabanes-Macheteau M, Rayon C, Fitchette-Lainé AC, Gomord V, Faye L. N-glycoprotein biosynthesis in plants: Recent developments and future trends, Plant Mol Biol 38, 31–48 (1998).

    Google Scholar 

  12. Jenkis N, Parekh RB, James DC, Getting the glycosylation right: Implications for the biotechnology industry, Nat Biotechnol 14, 975–81 (1996).

    Google Scholar 

  13. Ogawa H, Hijikata A, Amano M, Kojima K, Fukushima H, Ishizuka I, Kurihara Y, Matsumoto I, Structure and contribution to the antigenicity of oligosaccharides of japanese cedar (Cryptomeria japonica) pollen allergen Cry j, I: Relationship between the structures and antigenic epitopes of plant N-linked complex-type N-glycans, Glycoconjugate J 13, 555–66 (1996).

    Google Scholar 

  14. Hiemori M, Bando N, Ogawa T, Shimada H, Tsuji H, Yamanishi R, Terao J, Occurrence of IgE antibody-recognizing N-linked glycan moiety of a soybean allergen, Gly m Bd 28 K, Int Arch Allergy Immunol 122, 238–45 (2000).

    Google Scholar 

  15. Hood EE, Witcher DR, Maddock S, Meyer T, Baszczynski C, Bailey M, Flynn P, Register J, Marshall L, Bond D, Commercial production of avidin from transgenic Maize: Characterization of transformant, production, processing, extraction and purification, Mol Breed 3, 291–306 (1997).

    Google Scholar 

  16. Spik G, Strecker G, Fournet B, Bouquelet S, Montreuil J, Primary structure of the glycans from human lactotransferrin, Eur J Biochem 121, 413–9 (1982).

    Google Scholar 

  17. Sambrook J, Fritsch EF, Maniatis T, Molecular Cloning. A Laboratory Manual, 2nd edn. (Cold Spring Harbor Laboratory Press, Plainview, NY, 1989).

    Google Scholar 

  18. Salmon V, Legrand D, Slomianny M-C, ElYazidi I, Spik G, Gruber V, Bournat P, Olagnier B, Mison D, Theisen M, Mérot B, Production of human lactoferrin in transgenic tobacco plants, Protein Express Purif 13, 127–35 (1998).

    Google Scholar 

  19. Robert LS, Thompson RD, Flavell RB. Tissue-specific expression of a wheat high molecular Weight glutenin gene in transgenic tobacco, Plant Cell 1, 569–78 (1989).

    Google Scholar 

  20. McElroy D, Zhang W, Cao J, Wu R, Isolation of an efficient actin promoter for use in rice transformation, Plant Cell 2, 163–71 (1990).

    Google Scholar 

  21. Depicker A, Stachel S, Dhaese P, Zambryski P, Goodman HM, Nopaline synthase: Transcript mapping and DNA sequence, J Mol Appl Genet 1, 561–73 (1982).

    Google Scholar 

  22. Thompson CJ, Novva NR, Tizard R, Crameri R, Davies JE, Lauwereys M, Botterman J, Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus, EMBO J 6, 2519–23 (1987).

    Google Scholar 

  23. McElroy D, Blowers AD, Jenes B, Wu R, Construction of expression vectors based on the rice actin 1 (Act1) 5′ region for use in monocot transformation, Mol Gen Genet 231, 150–60 (1991).

    Google Scholar 

  24. Armstrong CL, Green CE, Phillips RL, Development and availability of germplasm with high Type II culture formation response, Maize Genet Coop Newsl 65, 92–3 (1991).

    Google Scholar 

  25. Tomes DT, Ross MC, Songstad DD, Direct DNA transfer into intact plant cells via microprojectile bombardment. In Plant Cell Tissue and Organ Culture: Fundamental Methods, edited by Gamborg OL, Phillips CG (Springer-Verlag, Berlin, 1995), pp. 197–213.

    Google Scholar 

  26. Zanetta J-P, Timmerman Ph, Leroy Y, Gas-liquid chromatography of the heptafluorobutyrate derivatives of the O-methyl glycosides on capillary columns: A method for the quantitative determination of the monosaccharide composition of glycoproteins and glycolipids, Glycobiology 9, 255–66 (1999).

    Google Scholar 

  27. Azari P, Phillips JL, Action of periodate on ovotransferrin and s metal complexes, Arch Biochem Biophys 138, 32–8 (1970).

    Google Scholar 

  28. Flahaut C, Capon C, Balduyck M, Ricart G, Sautiere P, Mizon J, Glycosylation pattern of human inter-α-inhibitor heavy chains, Biochem J 333, 749–56 (1998).

    Google Scholar 

  29. Baezinger JU, Fiete D, Structural determinants of concanavalin A specificity for oligosaccharides, J Biol Chem 254, 2400–7 (1979).

    Google Scholar 

  30. Shibuya N, Goldstein IJ, Van Damme EJM, Peumans WJ, Binding properties of a mannose-specific lectin from the snowdrop (Galanthus nivalis) bulb, J Biol Chem 263, 728–34 (1988).

    Google Scholar 

  31. Olnes S, Saltvedt E, Pihl A, Isolation and comparison of galactosebinding lectins from Abrus precatorius and Ricinus communis, J Biol Chem 249, 803–10 (1974).

    Google Scholar 

  32. Shibuya N, Goldstein IJ, Broekaert WF, Nsimba-Lubaki M, Peeters B, Peumans WJ, The eldeberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(α2–6)Gal/GalNAc sequence, J Biol Chem 262, 1596–601 (1987).

    Google Scholar 

  33. Wang WC, Cummings RC, The immobilized leukoagglutinin from the seeds of Maackia amurensis binds with high affinity to complex-type Asn-linked oligosaccharides containing terminal sialic acid-linked α2–3 to penultimate galactose residues, J Biol Chem 263, 4576–85 (1988).

    Google Scholar 

  34. Debray H, Montreuil J, Aleuria aurianta agglutinin. A new isolation procedure and further study of its specificity towards various glycopeptides and oligosaccharides, Carbohydr Res 185, 15–26 (1989).

    Google Scholar 

  35. Hutchens TW, Henry JF, Yip T-T, Structurally intact (78-kDa) forms of maternal lactoferrin purified from urine of preterm infants fed human milk: Identification of a trypsin-like proteolytic cleavage event in vivo that does not result in fragment dissociation, Proc Natl Acad Sci USA 88, 2994–8 (1991).

    Google Scholar 

  36. Van Berkel PHC, Geerts MEJ, van Veen HA, Kooiman PM, Pieper FR, De Boer, HA, Nuijens JH, Glycosylated and unglycosylated human lacoferrins both bind iron and show identical affinities towards human lyzozyme and bacterial lipopolysaccharide, but differ in their susceptibilities towards tryptic proteolysis, Biochem J 312, 107–14 (1995).

    Google Scholar 

  37. Tarentino AL, Deglycosylation of asparagine-linked glycans by peptide: N-glycosidase F, Biochemistry 24, 4665–71 (1985).

    Google Scholar 

  38. Weinberg ED, Human lactoferrin: A novel therapeutic with broad spectrum potential, J Pharm Pharmacol 53, 1303–10 (1985).

    Google Scholar 

  39. Matsumoto A, Yoshima H, Takasaki S, Kobata A, Structural study of the sugar chains of human lactoferrin: Finding of four novel complex-type asparagine-linked sugar chains, J Biochem 91, 143–55 (1982).

    Google Scholar 

  40. Legrand D, Salmon V, Coddeville B, Benaissa M, Plancke Y, Spik G, Structural determination of two N-linked glycans isolated from recombinant human lactoferrin expressed in BHK cells, FEBS Lett 365, 57–60 (1995).

    Google Scholar 

  41. Salmon V, Legrand D, Georges B, Slomianny MC, Coddeville B, Spik G, Characterization of human lactoferrin produced in the baculovirus expression system, Protein Expr Purif 9, 203–10 (1997).

    Google Scholar 

  42. Salmon V, Legrand D, Slomianny MC, el Yazidi I, Spik G, Gruber V, Bournat P, Olagnier B, Mison D, Theisen M, Merot B, Production of human lactoferrin in transgenic tobacco plants, Protein Expr Purif 13, 127–35 (1998).

    Google Scholar 

  43. Nuijens JH, van Berkel PH, Geerts ME, Hartevelt PP, de Boer HA, van Veen HA, Pieper FR, Characterization of recombinant human lactoferrin secreted in milk of transgenic mice, J Biol Chem 272, 8802–7 (1997).

    Google Scholar 

  44. Fitchette-Laine AC, Gomord V, Cabanes M, Michalski JC, Saint Macary M, Foucher B, Cavelier B, Hawes C, Lerouge P, Faye L, N-glycans harboring the Lewisa epitope are expressed at the surface of plant cells, Plant J 12, 1411–17 (1997).

    Google Scholar 

  45. Wilson IB, Zeleny R, Kolarich D, Staudacher E, Stroop CJ, Kamerling JP, Altmann F, Analysis of Asn-linked glycans from vegetable foodstuffs:Widespread occurrence of Lewisa, core α1,3-linked fucose and xylose substitutions, Glycobiology 11, 261–74 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samyn-Petit, B., Gruber, V., Flahaut, C. et al. N-glycosylation potential of maize: The human lactoferrin used as a model. Glycoconj J 18, 519–527 (2001). https://doi.org/10.1023/A:1019640312730

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019640312730

Navigation