Skip to main content
Log in

A Hamiltonian Formulation of Gravitational Theory that Allows One to Consider Curvature and Torsion as Conjugate Variables

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We consider a quadratic Lagrangian, in both curvature and torsion, with the aim of exploring the possibility that torsion and curvature behave as conjugate variables satisfying the commutation relations. For that proposal we first show that torsion represents a quantum correction to the classical equations of motion. We then observe that we have to introduce the spin in the Einstein theory with two spaces: a real space-time where we describe the curvature with tensors; and a complex space-time, where we describe torsion with spinors. This is not satisfactory, and to overcome this contradiction we describe both mass and spin in a unique manifold, the real space-time, with the use of geometric algebra and geometric product. In that manner we are able to introduce a torsion trivector and curvature trivector that satisfy the commutation relations, opening the road for a quantum description of gravity theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. de Sabbata, Nuovo Cimento A 107, 363 (1994); in Quantum Gravity, P. G. Bergmann, V. de Sabbata, and H.-J. Treder, eds. (World Scientific, Singapore, 1996), pp. 80-93. See also V. de Sabbata, C. Sivaram, H.-H. v. Borzeszkowski, and H.-J. Treder, Ann. Phys. 48, 497 (1991); H.-H. v. Borzeszkowski, V. de Sabbata, C. Sivaram, and H.-J. Treder, Found. Phys. Lett. 9, 157 (1996).

    Google Scholar 

  2. H.-H. v. Borzeszkowski and H.-J. Treder, in Quantum Gravity, P. G. Bergmann, V. de Sabbata, and H.-J. Treder, eds. (World Scientific, Singapore, 1996), pp. 32-42; in Spin in Gravity, P. G. Bergmann, V. de Sabbata, G. T. Gillies, and P. I. Pronin, eds. (World Scientific, Singapore, 1996), pp. 9-32; H.-J. Treder, Astr. Nachr. 315, 1 (1994).

    Google Scholar 

  3. B. K. Datta, in Quantum Gravity, P. G. Bergmann, V. de Sabbata, and H.-J. Treder, eds. (World Scientific, Singapore, 1996), pp. 54–79.

    Google Scholar 

  4. D. Hestenes, Clifford Algebra to Geometric Calculus ( Reidel, Dordrecht, The Netherlands, 1982).

    Google Scholar 

  5. D. Hestenes, New Foundations for Classical Mechanics ( Reidel, Dordrecht, The Netherlands, 1985).

    Google Scholar 

  6. S. Gull, A. Lasenby, and C. Doran, Found. Phys. 23, 1175 (1993).

    Google Scholar 

  7. A. Lasenby, C. Doran, and S. Gull, Found. Phys. 23, 1295 (1993).

    Google Scholar 

  8. C. Doran, D. Hestenes, F. Sommer, and N. von Acker, J. Math. Phys. 34, 3642 (1993).

    Google Scholar 

  9. F. W. Hehl, J. Nitsch, and J. Von der Heyde, in General Relativity and Gravitation (Proceedings of Jena Conference, 1982), pp. 329–355.

  10. R. T. Rauch, GRG 14, 331 (1982).

    Google Scholar 

  11. R. T. Rauch, Phys. Rev. D 25, 577 (1982).

    Google Scholar 

  12. R. T. Rauch, Phys. Rev. D 26, 931 (1982).

    Google Scholar 

  13. J. A. Schouten, Ricci Calculus (Springer, Berlin, 1954), p. 141.

    Google Scholar 

  14. B. K. Datta, V. de Sabbata, and L. Ronchetti, Nuovo Cimento B 113, 711 (1998).

    Google Scholar 

  15. P. A. M. Dirac, Proc. Roy. Soc. A 165 (1938).

  16. V. de Sabbata and P. Rizzati, Lett. Nuovo Cimento 20, 525 (1977).

    Google Scholar 

  17. V. de Sabbata and M. Gasperini, Lett. Nuovo Cimento 25, 489 (1979).

    Google Scholar 

  18. C. S. Isham, A. Salam, and J. Strathdee, Phys. Rev. D 3, 1805 (1971).

    Google Scholar 

  19. V. de Sabbata and M. Gasperini, Gen. Rel. Grav. 10, 825 (1979).

    Google Scholar 

  20. V. de Sabbata and M. Gasperini, Introduction to Gravitation (World Scientific, Singapore, 1985), pp. 286–289.

    Google Scholar 

  21. V. de Sabbata, in Gravitational Measurements, Fundamental Metrology and Constants, V. de Sabbata and V. N. Melnikov, eds. (Kluwer Academic, Dordrecht, 1980), NATO ASI Series, Vol. 230, p. 115.

    Google Scholar 

  22. V. de Sabbata, in Proceedings of the First International Symposium on Cosmic Ray Physics in Tibet ( Tibet University, Lhasa, China, 1994),p. 177.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Sabbata, V., Ronchetti, L. A Hamiltonian Formulation of Gravitational Theory that Allows One to Consider Curvature and Torsion as Conjugate Variables. Foundations of Physics 29, 1099–1117 (1999). https://doi.org/10.1023/A:1018889716186

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018889716186

Keywords

Navigation