Skip to main content
Log in

Quantum Gravity Induced from Unconstrained Membranes

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The theory of unconstrained membranes of arbitrary dimension is presented. Their relativistic dynamics is described by an action which is a generalization of the Stueckelberg point-particle action. In the quantum version of the theory, the evolution of a membrane's state is governed by the relativistic Schrödinger equation. Particular stationary solutions correspond to the conventional, constrained membranes. Contrary to the usual practice, our spacetime is identified, not with the embedding space (which brings the problem of compactification), but with a membrane of dimension 4 or higher. A 4-membrane is thus assumed to represent spacetime. The Einstein-Hilbert action emerges as an effective action after functionally integrating out the membrane's embedding functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. A. M. Dirac, Proc. R. Soc. London A 268, 57 (1962). J. Hughes, J. Liu, and J. Polchinski, Phys. Lett. B 180, 370 (1986). E. Bergshoeff, E. Sezgin, and P. K. Townsend, Phys. Lett. B 189, 75 (1987); 209, 451 (1988). E. Bergshoeff and E. Sezgin, Ann. Phys. 185, 330 (1988). M. P. Blencowe and M. J. Duff, Nucl. Phys. B 310, 387 (1988). U. Marquard and M. Scholl, Phys. Lett. B 209, 434 (1988). A. Karlhede and U. Lindström, Phys. Lett. B 209, 441 (1988). A. A. Bytsenko and S. Zerbini, Mod. Phys. Lett. A 8, 1573 (1993). A. Aurilia and E. Spallucci, Class. Quantum Gravit. 10, 1217 (1993).

    Google Scholar 

  2. M. Pavšič, Phys. Lett. B 197, 327 (1987); 205, 231 (1988); Class. Quantum Gravit. 5, 247 (1988). A. O. Barut and M. Pavšič, Lett. Math. Phys. 16, 333 (1988); Mod. Phys. Lett. A 7, 1381 (1992): Phys. Lett. B 306, 49 (1993); 331, 45 (1994).

    Google Scholar 

  3. A. D. Sakharov, Dokl. Akad. Nauk. SSSR 177, 70 (1967) [Sov. Phys. JETP 12, 1040 (1968) ]. L. S. Adler, Rev. Mod. Phys. 54, 729 (1982), and references therein.

    Google Scholar 

  4. V. Fock, Phys. Z. Sowj. 12, 404 (1937). E. C. G. Stueckelberg, Helv. Phys. Acta 14, 322 (1941). J. Schwinger, Phys. Rev. 82, 664 (1951); 14, 588 (1941); 15, 23 (1942). R. P. Feynman, Phys. Rev. 84, 108 (1951). L. P. Horwitz and C. Piron, Helv. Phys. Acta 46, 316 (1973). E. R. Collins and J. R. Fanchi, Nuovo Cimento A 48, 314 (1978). L. P. Horwitz, W. C. Schieve, and C. Piron, Ann. Phys. 137, 306 (1981). L. P. Horwitz, Found. Phys. 18, 1159 (1988); 22, 421 (1992). H. Enatsu, Progr. Theor. Phys. 30, 236 (1963); Nuovo Cimento A 95, 269 (1986). J. R. Fanchi, Phys. Rev. D 20, 3108 (1979). R. Kubo, Nuovo Cimento A 85, 293 (1985). N. Shnerb and L. P. Horwitz, Phys. Rev. A 48, 4068 (1993). J. R. Fanchi, Parametrized Relativistic Quantum Theory(Kluwer Academic, Dordrecht 1993).

    Google Scholar 

  5. M. Pavšič, Found. Phys. 21, 1005 (1991); Nuovo Cimento A 104, 1337 (1991); Doga Turk. J. Phys. 17, 768 (1993).

    Google Scholar 

  6. B. S. DeWitt, Rev. Mod. Phys. 29, 377 (1957); see also B. S. DeWitt, Phys. Rev. 85, 653 (1952).

    Google Scholar 

  7. T. Regge and C. Teitelboim, in Proceedings of the Marcel Grossman Meeting (Trieste, 1975). G. W. Gibbons and D. L. Wiltshire, Nucl. Phys. B 287, 717 (1987). V. Tapia, Class. Quantum Gravit. 6, L49 (1989). D. Maia, Class. Quantum Gravit. 6, 173 (1989). T. Hori, Phys. Lett. B 2, 188 (1989).

  8. M. Pavšič, Class. Quantum Gravit. 2, 869 (1985); Phys. Lett. A 107, 66 (1985); Phys. Lett. A 116, 1 (1986). Nuovo Cimento 95, 297 (1986).

    Google Scholar 

  9. M. Pavšič, Found. Phys. 24, 1495 (1994).

    Google Scholar 

  10. M. Pavšič, Found. Phys. 25, 819 (1995); Nuovo Cimento A 108, 221 (1995).

    Google Scholar 

  11. M. Pavšič, Nuovo Cimento A 110, 369 (1997).

    Google Scholar 

  12. M. Pavšič, Found. Phys. 26, 159 (1996).

    Google Scholar 

  13. M. Pavšič, Class. Quantum Gravit. 9, L13 (1992).

    Google Scholar 

  14. B. S. DeWitt, Phys. Rep. 19, 295 (1975). S. M. Christensen, Phys. Rev. D 14, 2490 (1976). L. S. Brown, Phys. Rev. D 15, 1469 (1977). T. S. Bunch and L. Parker, Phys. Rev. D 20, 2499 (1979). H. Boschi-Filho and C. P. Natividade, Phys. Rev. D 46, 5458 (1992). A. Follacci, Phys. Rev. D 46, 2553 (1992).

    Google Scholar 

  15. M. Pavšič, Gravit. Cosmol. 2, 1 (1996).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavšič, M. Quantum Gravity Induced from Unconstrained Membranes. Foundations of Physics 28, 1465–1477 (1998). https://doi.org/10.1023/A:1018861312590

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018861312590

Keywords

Navigation