Skip to main content
Log in

Empirical State Determination of Entangled Two-Level Systems and Its Relation to Information Theory

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Theoretical methods for empirical state determination of entangled two-level systems are analyzed in relation to information theory. We show that hidden variable theories would lead to a Shannon index of correlation between the entangled subsystems which is larger than that predicted by quantum mechanics. Canonical representations which have maximal correlations are treated by the use of Schmidt and Hilbert-Schmidt decomposition of the entangled states, including especially the Bohm singlet state and the GHZ entangled states. We show that quantum mechanics does not violate locality, but does violate realism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. W. Band and J. L. Park, “The empirical determination of quantum states,” Found. Phys. 1, 133–144 (1970).

    Google Scholar 

  2. J. L. Park and W. Band, “A general theory of empirical state determination in quantum physics: Part I,” Found. Phys. 1, 211–226 (1971). W. Band and J. L. Park, “A general method of empirical state determination in quantum physics: Part II,” Found. Phys. 1, 339–357 (1971).

    Google Scholar 

  3. U. Leonhardt, Measuring the Quantum State of Light (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  4. R. Peierls, Surprises in Theoretical Physics (Princeton University Press, Princeton, 1979); More Surprises in Theoretical Physics (Princeton University Press, Princeton, 1991).

    Google Scholar 

  5. L. Allen and J. H. Eberly, Optical Resonance and Two Level Atoms (Wiley, New York, 1975).

    Google Scholar 

  6. Y. H. Shih, A. V. Sergienko, M. H. Rubin, and C. O. Alley, “Two-photon entanglement in type-II parametric down conversion,” Phys. Rev. A. 50, 23–28 (1994). M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A. 50, 5122–5133 (1994). Y. H. Shih and A. V. Sergienko, “Observation of quantum beating in a simple beam-splitting experiment: Two-particle entanglement in spin and space-time,” Phys. Rev. A 50, 2564–2568 (1994).

    Google Scholar 

  7. J. Bub, Interpreting the Quantum World (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  8. A. C. Dotson, “Interpretive principles and the quantum mysteries,” Am. J. Phys. 66, 970–972 (1998).

    Google Scholar 

  9. Y. Aharonov, J. Anandan, and L. Vaidman, “Meaning of the wavefunction,” Phys. Rev. A 47, 4616–4626 (1993).

    Google Scholar 

  10. N. D. Hari Dass and T. Qureshi, “Critique of protective measurement,” Phys. Rev. A 59, 2590–2601 (1999).

    Google Scholar 

  11. A. Barenco, D. Deutsch, A. Ekert, and R. Josza, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083–4086 (1995).

    Google Scholar 

  12. V. Scarani, “Quantum computing,” Am. J. Phys. 66, 956–960 (1998).

    Google Scholar 

  13. C. H. Bennet, G. Brassard, C. Crepeau, R. Josza, A. Peres, and W. K. Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibel, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997). D. Boschi, S. Branca, F. De-Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998); A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).

    Google Scholar 

  14. A. Aspect, J. Dalibard, and E. Roger, “Experimental test of Bell's inequalities using time-varying analyzers,” Phys. Rev. Lett. 49, 1804–1807 (1982).

    Google Scholar 

  15. D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell's theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990).

    Google Scholar 

  16. N. D. Mermin, “Extreme quantum entanglement in a superposition of macroscopically distinct states,” Phys. Rev. Lett. 65, 1838–1840 (1990).

    Google Scholar 

  17. N. D. Mermin, “Quantum mysteries revisited,” Am. J. Phys. 58, 731–734 (1990).

    Google Scholar 

  18. E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).

    Google Scholar 

  19. B. C. Sanders, “Entangled coherent states,” Phys. Rev. A. 45, 6811–6815 (1992); 46, 2966 (1993). B. C. Sanders, K. S. Lee and M. S. Kim, “Optical homodyne measurements and entangled coherent states,” Phys. Rev. A 52, 735–741 (1995).

    Google Scholar 

  20. S. M. Barnett and S. D. J. Phoenix, “Information theory, squeezing and quantum correlations,” Phys. Rev. A 44, 535–545 (1991).

    Google Scholar 

  21. H. Everett III, “The theory of universal wave function,” in the Many-Worlds Interpretation of Quantum Mechanics, B. S. DeWitt and N. Graham, eds. (Princeton University Press, Princeton, 1973).

    Google Scholar 

  22. H. Everett III, “Relative state formulations of quantum mechanics,” Rev. Mod. Phys. 29, 454–462 (1957).

    Google Scholar 

  23. W. De Baere, A. Mann, and M. Revzen, “Locality and Bell's theorem,” Found. Phys. 29, 67–77 (1999).

    Google Scholar 

  24. A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic, Dordrecht, 1995).

    Google Scholar 

  25. T. M. Cover and J. A. Thomas, Elements of Information Theory, Chap. 2 (Wiley, New York, 1991).

    Google Scholar 

  26. R. G. Gallager, Information Theory and Reliable Communication (Wiley, New York, 1968).

    Google Scholar 

  27. J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987).

    Google Scholar 

  28. R. Horodecki and P. Horodecki, “Perfect correlations in the Einstein-Podolsky-Rosen experiments and Bell's inequalities,” Phys. Lett. A 210, 227–231 (1996).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Aryeh, Y., Mann, A. & Sanders, B.C. Empirical State Determination of Entangled Two-Level Systems and Its Relation to Information Theory. Foundations of Physics 29, 1963–1975 (1999). https://doi.org/10.1023/A:1018850602867

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018850602867

Keywords

Navigation