Skip to main content
Log in

Classical and Quantum Theories of Spin

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A great effort has been devoted to formulating a classical relativistic theory of spin compatible with quantum relativistic wave equations. The main difficulty in connecting classical and quantum theories rests in finding a parameter that plays the role of proper time at a purely quantum level. We present a partial review of several proposals of classical and quantum spin theories from the pioneering works of Thomas and Frenkel, revisited in the classical BMT work, to the semiclassical model of Barut and Zanghi. We show that the last model can be obtained from a semiclassical limit of the Feynman proper time parametrization of the Dirac equation. At the quantum level, we derive spin precession equations in the Heisenberg picture. Analogies and differences with respect to classical theories are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. I. Rubinow and J. B. Keller, Phys. Rev. 131, 2789 (1963).

    Google Scholar 

  2. K. Rafanelli and R. Schiller, Phys. Rev. 135, B279 (1964).

    Google Scholar 

  3. J. P. Aparicio, F. H. Gaioli, and E. T. Garcia Alvarez, Phys. Rev. A 51, 96 (1995).

    Google Scholar 

  4. V. Fock, Phys. Z. Sowjetunion 12, 404 (1937).

    Google Scholar 

  5. G. Beck, Rev. Faculdade Ciencias Coimbra 10, 66 (1942).

    Google Scholar 

  6. E. C. G. Stückelberg, Helv. Phys. Acta 14, 322 (1941); 15, 23 (1942).

    Google Scholar 

  7. R. P. Feynman, Alternative Formulation of Quantum Electrodynamics (Pocono Conference, Pennsylvania, 1948), quoted in Ref. 39.

  8. R. P. Feynman, Phys. Rev. 80, 440 (1950).

    Google Scholar 

  9. R. P. Feynman, Phys. Rev. 84, 108 (1951).

    Google Scholar 

  10. Y. Nambu, Prog. Theor. Phys. 5, 82 (1950).

    Google Scholar 

  11. J. Schwinger, Phys. Rev. 82, 664 (1951).

    Google Scholar 

  12. J. Frenkel, Z. Phys. 37, 243 (1926).

    Google Scholar 

  13. L. T. Thomas, Phil. Mag. 3, 1 (1927).

    Google Scholar 

  14. V. Bargmann, L. Michel, and V. L. Telegdi, Phys. Rev. Lett. 2, 435 (1959).

    Google Scholar 

  15. A. O. Barut and N. Zanghi, Phys. Rev. Lett. 52, 2009 (1984).

    Google Scholar 

  16. M. Mathisson, Acta Phys. Polon. 6, 163 (1937); 6, 218 (1937).

    Google Scholar 

  17. J. Weyssenhoff and A. Raabe, Acta Phys. Polon. 9, 7 (1947); 9, 19 (1947).

    Google Scholar 

  18. A. Papapetrou, Proc. Roy. Soc. (London ) A209, 248 (1951).

    Google Scholar 

  19. H. A. Kramers, Physica 1, 825 (1934).

    Google Scholar 

  20. W. Pauli, Helv. Phys. Acta 5, 179 (1932).

    Google Scholar 

  21. E. T. Garcia Alvarez, Ph.D. thesis, Universidad de Buenos Aires (in preparation).

  22. L. Michel and A. S. Wightman, Phys. Rev. 98, 1190 (1955).

    Google Scholar 

  23. J. P. Aparicio, F. H. Gaioli, E. T. Garcia Alvarez, D. F. Hurtado de Mendoza, and A. J. Kálnay, Anales AFA 3, 46 (1991).

    Google Scholar 

  24. J. P. Aparicio, F. H. Gaioli, and E. T. Garcia Alvarez, Anales AFA 4, 9 (1992).

    Google Scholar 

  25. J. P. Aparicio, F. H. Gaioli, and E. T. Garcia Alvarez, Phys. Lett. A 200, 233 (1995).

    Google Scholar 

  26. E. T. Garcia Alvarez and F. H. Gaioli, In Proceedings of the XXIInternational Colloquium on Group Theoretical Methods in Physics, Vol. 1 (Group 21), H. E. Doebner, W. Scherer, and P. Natermann, eds. (World Scientific, Singapore, 1997), p. 514.

    Google Scholar 

  27. E. T. Garcia Alvarez and F. H. Gaioli, Int. J. Theor. Phys. 36, 2391 (1997).

    Google Scholar 

  28. E. T. Garcia Alvarez and F. H. Gaioli, Found. Phys. 28, 1529 (1998).

    Google Scholar 

  29. A. O. Barut and W. Thacker, Phys. Rev. D 31, 2076 (1985).

    Google Scholar 

  30. R. P. Feynman, Phys. Rev. 76, 749 (1949).

    Google Scholar 

  31. F. H. Gaioli and E. T. Garcia Alvarez, Am. J. Phys. 63, 177 (1995).

    Google Scholar 

  32. A. Proca, J. Phys. Rad. 15, 65 (1954).

    Google Scholar 

  33. A. O. Barut and M. Pavsic, Class. Quantum Grav. 4, L41 (1987); 4, L131 (1987).

    Google Scholar 

  34. A. O. Barut and N. Unäl, Found. Phys. 23, 1423 (1993).

    Google Scholar 

  35. A. O. Barut and W. Thacker, Phys. Rev. D 31, 1386 (1985).

    Google Scholar 

  36. K. Huang, J. Phys. 20, 479 (1952).

    Google Scholar 

  37. A. O. Barut and A. J. Bracken, Phys. Rev. D 23, 2454 (1981).

    Google Scholar 

  38. A. O. Barut and M. G. Cruz, J. Phys. A: Math. Gen. 26, 6499 (1993).

    Google Scholar 

  39. S. S. Schweber, Rev. Mod. Phys. 58, 449 (1986).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaioli, F.H., Alvarez, E.T.G. Classical and Quantum Theories of Spin. Foundations of Physics 28, 1539–1550 (1998). https://doi.org/10.1023/A:1018834217984

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018834217984

Keywords

Navigation