Skip to main content
Log in

Which Natural Processes Have the Special Status of Measurements?

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We assume, in the first place, that two kinds of processes occur in nature: the strictly continuous and causal ones, which are governed by the Schrödinger equation and those implying discontinuities, which are ruled by probability laws. In the second place, we adopt a postulate ensuring the statistical sense of conservation laws. These hypotheses allow us to state a rule telling, in principle, in which situations and to which vectors the system's state can collapse, and which are the corresponding probabilities. The way our proposed approach works is illustrated with some examples and with the analysis of the measurement problem. We obtain the exponential decay law. A comparison with other attempts to solve the measurement problem is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. E. Burgos, in Studies on Mario Bunge's Treatise (Rodopi, Amsterdam, 1990).

    Google Scholar 

  2. J. S. Bell, CERN-TH. 4035, 1 (1984).

    Google Scholar 

  3. M. Jammer, The Philosophy of Quantum Mechanics (Wiley, New York, 1974).

    Google Scholar 

  4. G. C. Ghirardi, A. Rimini, and T. Weber, Phys. Rev. D 34, 470 (1986).

    Google Scholar 

  5. H. Primas, in The9th International Congress of Logic, Methodology, and Philosophy of Science (Uppsala, 1991).

  6. C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics (Wiley, New York, 1977).

    Google Scholar 

  7. M. E. Burgos, Found. Phys. 14, 739 (1984).

    Google Scholar 

  8. M. E. Burgos, Found. Phys. 14, 753 (1984).

    Google Scholar 

  9. M. E. Burgos, Phys. Lett. A 123, 313 (1987).

    Google Scholar 

  10. R. P. Feynman, R. B. Leighton, and M. Sands, Lectures on Physics, Vol. III (Addison-Wesley, Reading, Massachusetts, 1963).

    Google Scholar 

  11. N. Bohr, H. A. Kramers, and J. S. Slater, Philos. Mag. 47, 785 (1924).

    Google Scholar 

  12. M. Dresden, H. A. Kramers (Springer, New York, 1987).

    Google Scholar 

  13. E. Schrödinger, Nuovo Cimento IX, 162 (1958).

    Google Scholar 

  14. E. Merzbacher, Quantum Mechanics (Wiley, New York, 1961).

    Google Scholar 

  15. M. E. Burgos, Phys. Essays 7, 1 (1994).

    Google Scholar 

  16. M. E. Burgos, Speculations in Science and Technology, in press.

  17. P. Pearle, in New Techniques and Ideas in Quantum Measurement Theory (New York Academy of Sciences, New York, 1986).

    Google Scholar 

  18. A. Afriat and F. Selleri, in The Foundations of Quantum mechanicsHistorical Analysis and Open Questions, C. Garola and A. Rossi, eds. (Kluwer Academic, Dordrecht, 1995).

    Google Scholar 

  19. J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955).

    Google Scholar 

  20. L. D. Landau and M. E. Lifshitz, Statistical Physics (Pergamon, London, 1958).

    Google Scholar 

  21. M. E. Burgos, in The Problem of Time in Cosmology (Leningrad, 1990).

  22. T. E. Phipps, Found. Phys. 3, 435 (1973).

    Google Scholar 

  23. H. P. Noyes, Found. Phys. 5, 37 (1975).

    Google Scholar 

  24. G. C. Ghirardi, A. Rimini, and T. Weber, Found. Phys. 18, 1 (1988).

    Google Scholar 

  25. D. Bohm, Quantum Theory (Prentice-Hall, Princeton, 1951).

    Google Scholar 

  26. H. D. Zeh, in Foundations of Quantum Mechanics, B. d'Espagnat, ed. (Academic, New York, 1971), p. 263.

    Google Scholar 

  27. A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1975).

    Google Scholar 

  28. D. Bohm, Phys. Rev. 85, 166 (1952).

    Google Scholar 

  29. D. Bohm, Phys. Rev. 85, 180 (1952).

    Google Scholar 

  30. E. Schrödinger, in Science, Theory, and Man (Dover, New York, 1957).

    Google Scholar 

  31. R. B. Griffiths, J. Stat. Phys. 36, 219 (1984).

    Google Scholar 

  32. M. Gell-Mann and J. B. Hartle, in The3rd International Symposium on Foundations of Quantum Mechanics in the Light of New Technology (Tokyo, 1990).

  33. R. Omnès, Rev. Mod. Phys. 64, 339 (1992).

    Google Scholar 

  34. R. B. Lindsay and H. Margenau, Foundations of Physics (Dover, New York, 1957).

    Google Scholar 

  35. J. S. Bell, Phys. World 3, 33 (1990).

    Google Scholar 

  36. B. d'Espagnat, Phys. Lett. A 124, 204 (1987).

    Google Scholar 

  37. J. S. Bell, in Schrödinger: Centenary Celebration of a Polymath, C. Kilmister, ed. (Cambridge University Press, Cambridge, 1987), p. 41.

    Google Scholar 

  38. L. E. Ballentine, Phys. Rev. A 43, 9 (1991).

    Google Scholar 

  39. H. P. Stapp, Phys. Rev. A 46, 6860 (1992).

    Google Scholar 

  40. M. C. Caves, Phys. Rev. D 33, 1643 (1986).

    Google Scholar 

  41. M. Bunge, Foundations of Physics (Springer, New York, 1967).

    Google Scholar 

  42. M. E. Burgos, Kinam 5, 277 (1983).

    Google Scholar 

  43. M. E. Burgos, Found. Phys. 17, 809 (1987).

    Google Scholar 

  44. A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic, Dordrecht, 1993).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burgos, M.E. Which Natural Processes Have the Special Status of Measurements?. Foundations of Physics 28, 1323–1346 (1998). https://doi.org/10.1023/A:1018826910348

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018826910348

Keywords

Navigation