Skip to main content
Log in

Broken Gauge Symmetry in Macroscopic Quantum Circuits

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In this paper, we discuss the macroscopic quantum behavior of simple superconducting circuits. Starting from a Lagrangian for electromagnetic field with broken gauge symmetry, we construct a quantum circuit model for a superconducting weak link (SQUID) ring, together with the appropriate canonical commutation relations. We demonstrate that this model can be used to describe macroscopic excitations of the superconducting condensate and the localized charge states found in some ultrasmall-capacitance weak-link devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. P. Feynman, The Feynman Lectures in Physics, Vol. III (Addison-Wesley, Reading, 1966), Chap. 21.

    Google Scholar 

  2. T. P. Spiller, T. D. Clark, R. J. Prance, H. Prance, and D. A. Poulton, Nuovo Cimento B 108, 135 (1993).

    Google Scholar 

  3. B. D. Josephson, Phys. Lett. 1, 251 (1962).

    Google Scholar 

  4. See e.g., P. N. Butcher and D. Cotter, Elements of Nonlinear Optics (Cambridge University Press, Cambridge, 1990).

    Google Scholar 

  5. A. Widom, J. Low. Temp. Phys. 37, 449 (1979).

    Google Scholar 

  6. J. E. Mutton, R. J. Prance, and T. D. Clark, Phys. Lett. A 104, 375 (1984). A. J. Leggett, Contemp. Phys. 25, 583 (1984). S. Han, R. Rouse, and J. E. Lukens, Phys. Rev. Lett. 76, 3404 (1996).

    Google Scholar 

  7. A. Widom and Y. Srivastava, Phys. Rep. 148, 1 (1987).

    Google Scholar 

  8. G. Schön and A. D. Zaikin, Phys. Rep. 198, 237 (1990).

    Google Scholar 

  9. D. V. Averin and K. K. Likharev, in Mesoscopic Phenomena in Solids, B. L. Altshuler, P. A. Lee, and R. A. Webb, eds. (Elsevier, Amsterdam, 1991), Chap. 6.

    Google Scholar 

  10. T. P. Spiller, T. D. Clark, R. J. Prance, and A. Widom, Prog. Low Temp. Phys. XIII, 219 (1992).

    Google Scholar 

  11. J. F. Ralph, T. D. Clark, R. J. Prance, and H. Prance, Physica B 226, 355 (1996).

    Google Scholar 

  12. See e.g., A. Barone and G. Paterno, Physics and Applications of the Josephson Effect (Wiley, New York, 1982).

    Google Scholar 

  13. T. D. Clark, “Superconductivity,” in Solid State Science, Past, Present and Predicted, D. L. Wearie and C. G. Winsor, eds. (Adam Hilger, Bristol, 1987).

    Google Scholar 

  14. F. Ralph, T. D. Clark, R. J. Prance, H. Prance, and J. Diggins, J. Phys. Cond. Matter. 9, 8275-8285 (1997).

    Google Scholar 

  15. A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle System (McGray-Hill, New York, 1971), Chap. 13.

    Google Scholar 

  16. D. R. Tilley and J. Tilley, Superfluidity and Superconductivity (Adam Hilger, Bristol, 1986), Chap. 8.

    Google Scholar 

  17. N. R. Werthamer, in Superconductivity, R. D. Parks, ed. (Marcel Dekker, New York, 1969), Chap. 6.

    Google Scholar 

  18. S. Saito and Y. Murayama, Phys. Lett. A 139, 85 (1989).

    Google Scholar 

  19. E. Abrahams and T. Tsuneto, Phys. Rev. 152, 416 (1966).

    Google Scholar 

  20. L. P. Gorkov, Sov. Phys. JETP 9, 1364 (1959).

    Google Scholar 

  21. S. Weinberg, Prog. Theor. Phys. Suppl. 86, 43 (1986).

    Google Scholar 

  22. J.-M. Duan, Phys. Rev. Lett. 74, 5128 (1995).

    Google Scholar 

  23. P. D. De Gennes, Superconductivity of Metals and Alloys (Benjamin, New York, 1966).

    Google Scholar 

  24. J. F. Ralph, T. D. Clark, R. J. Prance, H. Prance, and J. Diggins, J. Phys. Cond. Matter 8, 1 (1996).

    Google Scholar 

  25. E. Farhi and R. Jackiw, Dynamical Gauge Symmetry Breaking: A Collection of Reprints (World Scientific, Singapore, 1982).

    Google Scholar 

  26. See e.g., F. Mandl and G. Shaw, Quantum Field Theory (Wiley, New York, 1984).

    Google Scholar 

  27. D. M. Gitman, I. V. Tyutin, Quantization of Fields with Constraints (Springer, Berlin, 1990), Chap. 4.

    Google Scholar 

  28. A. Widom, in Macroscopic Quantum Phenomena, Proceedings of LT-19 Satellite Workshop, T. D. Clark, H. Prance, R. J. Prance, and T. P. Spiller (World Scientific, Singapore, 1991), p. 55.

    Google Scholar 

  29. A. Widom, G. Megaloudis, T. D. Clark, H. Prance, and R. J. Prance, J. Phys. A 15, 3877 (1982).

    Google Scholar 

  30. R. J. Prance, T. D. Clark, R. Whiteman, J. Diggins, J. F. Ralph, H. Prance, T. P. Spiller, A. Widom, and Y. Srivastava, Physica B 203, 381 (1994).

    Google Scholar 

  31. J. Diggins, R. R. Whiteman, T. D. Clark, R. J. Prance, H. Prance, J. F. Ralph, A. Widom, and Y. Srivastava, Physica B 233, 8 (1997).

    Google Scholar 

  32. See e.g., L. D. Landau and E. M. Lifshitz, Landau and Lifshitz Course of Theoretical Physics Vol. 3, Quantum Mechanics, 3rd edn. (Pergamon, Oxford, 1977).

    Google Scholar 

  33. See e.g., L. S. Kuzmin and K. K. Likharev, Jpn. J. Appl. Phys. 26, 1387 (1987).

    Google Scholar 

  34. J. M. Martinis and R. L. Kautz, Phys. Rev. Lett. 63, 1565 (1990).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ralph, J.F., Clark, T.D., Prance, R.J. et al. Broken Gauge Symmetry in Macroscopic Quantum Circuits. Foundations of Physics 28, 485–503 (1998). https://doi.org/10.1023/A:1018772229718

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018772229718

Keywords

Navigation