Advertisement

Foundations of Physics

, Volume 28, Issue 4, pp 531–548 | Cite as

Emergence of Classical Radiation Fields through Decoherence in the Scully-Lamb Laser Model

  • Julio Gea-Banacloche
Article

Abstract

The quantum theory of the laser of Scully and Lamb is used to determine the longest-lived states of the quantized field in an idealized, single-mode laser cavity. It is shown that quasiclassical states (states with well-defined phase and amplitude) are naturally selected. A quantum trajectory analysis provides some insight as to why this is so.

Keywords

Radiation Quantum Theory Laser Cavity Trajectory Analysis Quantum Trajectory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    See, for example, C. Cohen Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms: Introduction to Quantum Electrodynamics (Wiley-Interscience, New York, 1989).Google Scholar
  2. 2.
    R. J. Glauber, Phys. Rev. 131, 2766 (1963).Google Scholar
  3. 3.
    R. L. Pflegor and L. Mandel, Phys. Rev. 159, 1084 (1967); J. Opt. Soc. Am. 58, 946 (1968).Google Scholar
  4. 4.
    L. Mandel, Phys. Rev. 134, A10 (1964).Google Scholar
  5. 5.
    In fact, it has been shown quite recently that highly excited number states lead to interference patterns just as coherent states do, see J. Javanainen and S. M. Yoo, Phys. Rev. Lett. 76, 161 (1996), and J. I. Cirac, C.Gardiner, M. Narachewski, and P. Zoller, Phys. Rev. A 54, R3714 (1996).Google Scholar
  6. 6.
    J. Gea-Banacloche, in New Frontiers in Quantum Electrodynamics and Quantum Optics, A. O. Barut, ed. (Plenum, New York, 1990).Google Scholar
  7. 7.
    W. H. Zurek, Phys. Rev. D 26, 1862 (1982). See also the more recent article by W. H. Zurek in Phys. Today 44(10), 36 (1991), and Ref. 11 below.Google Scholar
  8. 8.
    H. M. Wiseman, Phys. Rev. A 47, 5180 (1993).Google Scholar
  9. 9.
    M. O. Scully and W. E. Lamb, Jr., Phys. Rev. 159, 208(1967); see also M. Sargent III, M. O. Scully, and W. E. Lamb, Jr., Laser Physics (Addison-Wesley, Reading, Massachusetts, 1974).Google Scholar
  10. 10.
    See H.J. Carmichael, An Open Systems Approach to Quantum Optics (Springer, 1993); K. Mølmer, Y. Castin, and J. Dalibard, J. Opt. Soc. Am. B 10, 524 (1993); G. C. Hegerfeldt, Phys. Rev. A 47, 449 (1993); R. Dum, P. Zoller, and H. Ritsch, Phys. Rev. A 45, 4879 (1992); and articles in the special issue of Quantum Semiclass. Opt. 8(1) (1996).Google Scholar
  11. 11.
    W. H. Zurek, S. Habib, and J. P. Paz, Phys. Rev. Lett. 70, 1187 (1993).Google Scholar
  12. 12.
    C. Kiefer, Phys. Rev. D 46, 1658 (1992).Google Scholar
  13. 13.
    J. R. Anglin and W. H. Zurek, Phys. Rev. D 53, 7327 (1996).Google Scholar
  14. 14.
    K. Mølmer, Phys. Rev. A 55, 3195 (1997).Google Scholar
  15. 15.
    I follow the approach of M. Naraschewski and A. Schentzle, Z. Phys. D 33, 79 (1995), with minor modifications. For Lindblad's original paper, see G. Lindblad, Commun. Math. Phys. 48, 119 (1976). See also T. C. Burt and J. Gea-Banacloche, Quantum Semiclass. Opt. 8, 105 (1996), for further explanations of some of the notation used below.Google Scholar
  16. 16.
    See, e.g., T. C. Ralph and C. M. Savage, Opt. Lett. 16, 1113 (1991); H. Ritsch and P. Zoller, 45, 1881 (1992); H.-J. Briegel, G. M. Meyer, and B.-G. Englert, Europhys. Lett. 33, 515 (1996).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Julio Gea-Banacloche

There are no affiliations available

Personalised recommendations