Skip to main content
Log in

Quantum Interference, Quantum Theory of Measurement, and (In)completeness of Quantum Mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The new techniques and ideas in quantum interferometry with neutrons, photons, atoms, electrons, and Bose condensates that fluorished in the last two decades have influenced in a decisive way the thinking and the research in the foundations and interpretation of quantum mechanics. The controversies existing among different schools on the reality of matter waves of quantum theory, the postulates of quantum measurement theory, and the (in)completeness of quantum mechanics have to be approached now in a new way. Our argumentation follows the spirit of the Paris school.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. Percival, Phys. World 10, No. 3, 43 (1997).

    Google Scholar 

  2. L. de Broglie, La Physique Quantique, Restera-t-elle Indeterministe (Gauthier-Villars, Paris, 1953).

    Google Scholar 

  3. D. Bohm, Phys. Rev. 84, 166 (1951); 85, 166 (1952).

    Google Scholar 

  4. D. Bohm and J. P. Vigier, Phys. Rev. 96, 208 (1954).

  5. B. J. Hiley, “ The role of the quantum potential in determining particle trajectories and the resolution of the measurement problem, ” in Open Questions in Quantum Physics, G. Tarozzi and A. van der Merwe, eds. (Reidel, Dordrecht, 1984).

    Google Scholar 

  6. F. Selleri, Ann. Fond. L. de Broglie 7, 45 (1982).

    Google Scholar 

  7. F. Selleri and G. Tarozzi, Nuovo Cimento A 43, 31 (1978).

    Google Scholar 

  8. E. Nelson, Quantum Fluctuations (Princeton University Press, Princeton, 1985).

    Google Scholar 

  9. E. Nelson, “Field Theory and the Future of Stochastic mechanics,” in Proc. Int. Conf. Stochastic Processes in Classical and Quantum systems, Ascona, 1985.

  10. K. Yasue and J. C. Zambrini, Ann. Phys. 159, 99 (1985).

    Google Scholar 

  11. T. W. Marshall, Nuovo Cimento 38, 206 (1965). T. H. Boyer, Phys. Rev. 174, 1764 (1968). L.de la Peña, in Stochastic Processes Applied to Physics and Other Related Fields, B. Gómez et al., eds. (World Scientific, Singapore, 1983).

    Google Scholar 

  12. A. O. Barut, M. Božić, and Z. Marić, Found. Phys. 18, 999 (1988).

    Google Scholar 

  13. A. O. Barut, Phys. Lett. 143, 349 (1990).

    Google Scholar 

  14. A. O. Barut, “ The deterministic wave mechanics. A bridge between classical mechanics and probabilistic theory,” in Interpretation of Quantum Theory, L. Acardi, ed. (Acta Encyclopedia, 1993).

  15. M. Božić and Z. Marić, Phys. Lett. A 158, 33 (1991).

    Google Scholar 

  16. M. Božić, Z. Mari ć, and J. P. Vigier, Found. Phys. 22, 1325 (1992).

    Google Scholar 

  17. H. Yilmaz, “Towards a comprehensive physical theory: gravity and quantum mechanics,” in The Present Status of the Quantum Theory of Light, S. Jeffers et al., eds. (Kluwer, Dordrecht, 1997).

    Google Scholar 

  18. J. S. Bell, “Against Measurement,” in Sixty-Two Years of Uncertainty, A. I. Miller, ed. (Plenum, New York, 1990).

    Google Scholar 

  19. S. Sonego, Eur. J. Phys. 17, 118 (1996).

    Google Scholar 

  20. H. Rauch, “Scope of neutron interferometry,” in Neutron Interferometry, U. Bonse and H. Rauch, eds. ( Clarendon Press, Oxford, 1979).

    Google Scholar 

  21. P. Grangier, G. Roger, and A. Aspect, “A New Light on Single Photon Interferences,” in New Techniques and Ideas in Quantum Measurement Theory, D. M. Greenberger, ed., Ann. N.Y. Acad. Sci. 480, 98 (1986).

  22. A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki, and H. Ezawa, Am. J. Phys. 57, 118 (1989).

    Google Scholar 

  23. A. Tonomura, Electron Holography (Springer, Berlin, 1993).

    Google Scholar 

  24. D. E. Pritchard, T. D. Hammond, J. Schmiedmayer, C. R. Ekstrom, and M. S. Chapman, “Atom Interferometry,” in Quantum Interferometry, F. De Martini, G. Denardo, and A. Zeilinger, eds. (World Scientific, Singapore, 1994).

    Google Scholar 

  25. H. Kaiser, R. Clothier, S. A. Werner, H. Rauch, and H. Wolwitsch, Phys. Rev. A 45, 31 (1992).

    Google Scholar 

  26. G. Badurek, H. Rauch, and D. Tupinger, Phys. Rev. A 34, 2600 (1986).

    Google Scholar 

  27. M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, Science 269, 198 (1997).

    Google Scholar 

  28. M. P. Silverman, More Than One Mystery (Springer, New York, 1995).

    Google Scholar 

  29. A. Aspect, “Wave - particle duality: a case study,” in Sixty-Two Years of Uncertainty, A. I. Miller, ed. (Plenum, New York, 1990).

    Google Scholar 

  30. L. de Broglie, L 'interpretation de la Mechanique Ondulatoire (Gauthier-Villars, Paris, 1957).

    Google Scholar 

  31. N. G. van Kampen, Physica A 153, 97 (1988).

    Google Scholar 

  32. C. Townsend, W. Ketterle, and S. Stringari, Phys. World 10, No. 3, 29 (1997).

    Google Scholar 

  33. J. von Neumann, Mathematische Grundlagen der Quantentheorie (Springer, Berlin, 1931).

    Google Scholar 

  34. L. de Broglie, Etude Critique des Bases de l'interpretation Actuelle de la Mecanique Ondulatoire (Gauthier-Villars, Paris, 1963); English translation (Elsevier, Amsterdam, 1964).

    Google Scholar 

  35. M. Born, Z. Phys. 37, 863 (1926); translation into english in Quantum Theory and Measurement, J. A. Wheeler and W. H. Zurek, eds. (Princeton University Press, Princeton, 1983).

  36. J. P. Vigier, “New theoretical implications of neutron interferometric double resonance experiments,” in Matter Wave Interferometry, G. Badurek, H. Rauch, and A. Zeilinger, eds. Physica B 151, 387 (1988).

  37. M. Hillery, R. F. O'Connell, M. O. Scully, and E. P. Wigner, Phys. Rep. 106, 121 (1984).

    Google Scholar 

  38. M. Božić and Z. Marić, Found. Phys. 25, 159 (1995).

    Google Scholar 

  39. M. Božić, “Compatible statistical interpretation of interference in double-slit interferometer,” in Waves and Particles in light and Matter, A. van der Merwe and A. Garuccio, eds. ( Plenum, New York, 1994).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Božić, M., Marić, Z. Quantum Interference, Quantum Theory of Measurement, and (In)completeness of Quantum Mechanics. Foundations of Physics 28, 415–427 (1998). https://doi.org/10.1023/A:1018712011063

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018712011063

Keywords

Navigation