Foundations of Physics

, Volume 28, Issue 4, pp 549–559 | Cite as

Two Cold Atoms in a Harmonic Trap

  • Thomas Busch
  • Berthold-Georg Englert
  • Kazimierz Rzażewski
  • Martin Wilkens


Two ultracold atoms moving in a trap interact weakly at a very short distance. This interaction can be modeled by a properly regularized contact potential. We solve the corresponding time-independent Schrödinger equation under the assumption of a parabolic, spherically symmetric trapping potential.


Short Distance Cold Atom Trapping Potential Contact Potential Harmonic Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Verkerk, B. Lounis, C. Salomon, and C. Cohen-Tannoudji, Phys. Rev. Lett. 68, 3861 (1992); P. S. Jessen, C. Gerz, P. D. Lett, W. D. Phillips, S. L. Rolston, R. J. C. Spreeuw, and C. I. Westbrook, Phys. Rev. Lett. 69, 49 (1992); A. Hemmerich, C. Zimmermann, and T. W. Hänsch, Europhys. Lett. 22, 89 (1993).Google Scholar
  2. 2.
    M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198 (1995); C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Phys. Rev. Lett. 75, 1687 (1995); K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995).Google Scholar
  3. 3.
    S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics (Springer, Heidelberg, 1988).Google Scholar
  4. 4.
    G. Barton and D. Waxman, “Wave equations with point-support potentials having dimensionless strength parameters,” University of Sussex, unpublished.Google Scholar
  5. 5.
    P. Šeba, Czech. J. Phys. B 36, 559 (1986).Google Scholar
  6. 6.
    K. Huang, Statistical Mechanics, 2nd edn. (Wiley, New York, 1987).Google Scholar
  7. 7.
    E. Fermi, Ricera Sci. 7, 12 (1936).Google Scholar
  8. 8.
    K. Wódkiewicz, Phys. Rev. A 43, 68 (1991).Google Scholar
  9. 9.
    B.-G. Englert, Lett. Math. Phys. 34, 239 (1995).Google Scholar
  10. 10.
    G. Breit and P. T. Zilsel, Phys. Rev. 71, 232 (1947).Google Scholar
  11. 11.
    I. J. Bersons, J. Phys. B 8, 3078 (1975).Google Scholar
  12. 12.
    P. Šeba, Phys. Rev. Lett. 64, 1855 (1990).Google Scholar
  13. 13.
    R. K. Janev and Z. Maric, Phys. Lett. 46A, 313 (1974).Google Scholar
  14. 14.
    M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Thomas Busch
  • Berthold-Georg Englert
  • Kazimierz Rzażewski
  • Martin Wilkens

There are no affiliations available

Personalised recommendations