Skip to main content
Log in

Torsional Weyl-Dirac Electrodynamics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Issuing from a geometry with nonmetricity and torsion we build up a generalized classical electrodynamics. This geometrically founded theory is coordinate covariant, as well as gauge covariant in the Weyl sense. Photons having arbitrary mass, intrinsic magnetic currents, (magnetic monopoles), and electric currents exist in this framework. The field equations, and the equations of motion of charged (either electrically or magnetically) particles are derived from an action principle. It is shown that the interaction between magnetic monopoles is transmitted by massive photons. On the other hand, the photon is massive only in the presence of magnetic currents. We obtained a static spherically symmetric solution, describing either the Reissner-Nordstrom metric of an electric monopole, or the metric and field of a magnetic monopole. The latter must be massive. In the absence of torsion and in the Einstein gauge one obtains the Einstein-Maxwell theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. P. A. M. Dirac, Proc. Roy. Soc. London A 133, 60 (1931).

    Google Scholar 

  2. P. A. M. Dirac, Phys. Rev. 74 817 (1948).

    Google Scholar 

  3. J. D. Jackson, Classical Electrodynamics, 2nd edn., (Wiley New York, 1975), p. 254.

    Google Scholar 

  4. M. N. Saha, Ind. J. Phys. 10, 141 (1936).

    Google Scholar 

  5. M. N. Saha, Phys. Rev. 75, 1968 (1949).

    Google Scholar 

  6. H. A. Wilson, Phys. Rev. 75, 309 (1949).

    Google Scholar 

  7. A. S. Goldhaber, Phys. Rev. 140, 1407 (1965).

    Google Scholar 

  8. Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).

    Google Scholar 

  9. R. W. Kuehne, “A model of magnetic monopoles,” preprint (1996).

  10. L. de Broglie, C. R. Acad. Sc. (Paris) 199, 445 (1934).

    Google Scholar 

  11. R. A. Lyttleton and H. Bondi, Proc. Roy. Soc. London A 252, 313 (1959).

    Google Scholar 

  12. H. Ardavan, Phys. Rev. D 29, 207 (1989).

    Google Scholar 

  13. S. Coleman and E. Weinberg, Phys. Rev. D 7, 1888 (1973).

    Google Scholar 

  14. A. S. Goldhaber and M. N. Nieto, Rev. Mod. Phys. 43, 277 (1971).

    Google Scholar 

  15. Particle Data Group (Review of Particle Properties), Phys. Rev. D 50, 1191, 1351 (1994).

  16. M. Israelit, Gen. Rel. Grav. 29, 1411 (1997).

    Google Scholar 

  17. M. Israelit, Gen. Rel. Grav. 29, 1597 (1997).

    Google Scholar 

  18. H. Weyl, Ann. Phys. (Leipzig ) 59, 101 (1919).

    Google Scholar 

  19. A. Einstein, Ann. Phys. (Leipzig ) 49, 769 (1916).

    Google Scholar 

  20. P. A. M. Dirac, Proc. Roy. Soc. London A 333, 403 (1973).

    Google Scholar 

  21. N. Rosen, Found. Phys. 12, 213 (1982).

    Google Scholar 

  22. M. Israelit and N. Rosen, Found. Phys. 13, 1023 (1983).

    Google Scholar 

  23. M. Israelit, Found. Phys. 19, 33 (1989).

    Google Scholar 

  24. J. Schouten, Ricci Calculus (Springer, Berlin, 1954).

    Google Scholar 

  25. A. L. Proca, J. Phys. Rad. 7, 347 (1936).

    Google Scholar 

  26. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon, Oxford, 1975).

    Google Scholar 

  27. R. T. Hammond, Nuovo Cimento B 108, 725 (1993).

    Google Scholar 

  28. K. Hayashi and T. Shirafuji, Prog. Theor. Phys. 64, 866 (1980).

    Google Scholar 

  29. R. G. Chambers, Phys. Rev. Lett. 5, 3 (1960).

    Google Scholar 

  30. M. Israelit, Found. Phys. 19, 77 (1989).

    Google Scholar 

  31. W. R. Wood and G. Papini, Phys. Rev. D 45, 3617 (1992).

    Google Scholar 

  32. V. Canuto, P. J. Adams, S.–H. Hsieh, and E. Tsiang, Phys. Rev. D 16, 1643 (1977).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Israelit, M. Torsional Weyl-Dirac Electrodynamics. Foundations of Physics 28, 205–229 (1998). https://doi.org/10.1023/A:1018700819298

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018700819298

Keywords

Navigation