Skip to main content
Log in

Structure and hardness of nanocrystalline silver

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanocrystalline silver (Ag) was prepared by in situ compacting of ultra-fine silver particles. The structures of as-compacted and annealed specimens were analysed by high-resolution transmission electron microscopy and scanning electron microscopy. Vickers microhardness was measured on the specimens. The ultra-fine particles aggregate before compaction. It is found that the nanocrystalline specimens are obtained by the compaction of the aggregates. Microstructure inside the aggregates does not change as the compacting pressure increases from 0.25 to 2.00 GPa. The compacting pressure affects on the structure and density of the boundaries between the aggregates, i.e. the formation of the crack-type defects of about 1 μm at the boundaries. Thermal stability of nanocrystalline Ag is significantly low; grain coarsening starts below 200 °C. However, a nanometre-sized layered structure forms in local regions upon annealing and is stable up to 800 °C. Vickers microhardness of as-compacted specimens increases with increasing compacting pressure. The increase is attributed to the decrease of the number of crack-type defects. Vickers microhardness of nanocrystalline Ag begins to decrease due to grain coarsening upon annealing around 200 °C. The microhardness of nanocrystalline Ag deviates from the HalI–Petch relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. E. HALL,Proc. Phys. Soc. London B64 (1951) 747.

    Article  CAS  Google Scholar 

  2. N. J. PETCH,J. Iron Steel Inst. 174 (1953) 25.

    CAS  Google Scholar 

  3. A. H. CHOKSHI, A. ROSEN, J. KARCH and H. GLEITER,Scripta Metall. 23 (1989) 1679.

    Article  CAS  Google Scholar 

  4. K. LU, W. D. WEI and J. T. WANG,Scripta Metall. Mater. 24 (1990) 2319.

    Article  CAS  Google Scholar 

  5. G. PALUMBO, U. ERB and K. T. AUST,ibid 24 (1990) 2347.

    Article  CAS  Google Scholar 

  6. G. E. FOUGERE, J. R. WEERTMAN, R. W. SIEGEL and S. KIM,ibid 26 (1992) 1879.

    Article  CAS  Google Scholar 

  7. G. W. NIEMAN, J. R. WEERTMAN and R. W. SIEGEL,Scripta Metall. 23 (1989) 2013.

    Article  CAS  Google Scholar 

  8. G. W. NIEMAN, J. R. WEERTMAN and R. W. SIEGEL,J. Mater Res. 6 (1991) 1012.

    Article  CAS  Google Scholar 

  9. G. D. HUGHES, S. D. SMITH, C. S. PANDE, H. R. JOHNSON and R.W. ARMSTRONG,Scripta Metall. 20 (1986) 93.

    Article  CAS  Google Scholar 

  10. R. BIRRINGER, U. HERR and H. GLEITER,Trans. JIM. 27 (1986) 43.

    Google Scholar 

  11. H. GLEITER,Prog. Mater. Sci. 33 (1989) 223.

    Article  CAS  Google Scholar 

  12. R. BIRRINGER,Mater. Sci. Eng. A117 (1989) 33.

    Article  CAS  Google Scholar 

  13. T. KIZUKA, Y. NAKAGAMI, T. OHATA, I. KANAZAWA, H. ICHINOSE, H. MURAKAMI and Y. ISHIDA,Phil. Mag. A69 (1994) 551

    Article  Google Scholar 

  14. T. KIZUKA, H. ICHINOSE and Y. ISHIDA,J. Mater. Sci. 29 (1994) 3107.

    Article  CAS  Google Scholar 

  15. K. KIMOTO, Y. KAMIYA, M. NONOYAMA and R. UYEDA,Jpn. J. Appl. Phys. 2 (1963) 702.

    Article  CAS  Google Scholar 

  16. R. UYEDA,Prog. Mater. Sci. 35 (1991) 1.

    Article  CAS  Google Scholar 

  17. W. WUNDERICH, Y. ISHIDA and R. MAUER,Scripta Metall. 24 (1990) 201.

    Article  Google Scholar 

  18. H. E. SCHAEFER, R. WURSCHUM, R. BIRRINGER and H. GLEITER,Phys. Rev. B38 (1988) 9545.

    Article  Google Scholar 

  19. B. Z. DING, H. Y. TONG, H. G. JIANG, J. T. WANG and W. D. WEI,Scripta Metall. Mater. 28 (1993) 1107.

    Article  CAS  Google Scholar 

  20. P. G. SANDERS, J. R. WEERTMAN, J. G. BARKER and R. W. SIEGEL,ibid 29 (1993) 91.

    Article  CAS  Google Scholar 

  21. G. PALUMBO, D. M. DOYLE, A. M. EL-SHERIKT, U. ERBT and K. T. AUST,ibid 25 (1991) 679.

    Article  CAS  Google Scholar 

  22. Y. LIU and B. R. PATTERSON,Acta Metall. Mater. 41 (1993) 2651.

    Article  CAS  Google Scholar 

  23. S. OKUDA and F. TANG,Nanostruct. Mater. 6 (1995) 585.

    Article  Google Scholar 

  24. R. W. SIEGEL, S. RAMASAMY, H. HAHN, LI ZONGQUAN, LU TING and R. GRONSKY,J. Mater. Res. 3 (1988) 1367.

    Article  CAS  Google Scholar 

  25. A. M. EL-SHERIK, U. ERB, G. PALUMBO and K. T. AUST,Scripta Metall. Mater. 27 (1992) 1185.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

KIZUKA, T., ICHINOSE, H. & ISHIDA, Y. Structure and hardness of nanocrystalline silver. Journal of Materials Science 32, 1501–1507 (1997). https://doi.org/10.1023/A:1018566303784

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018566303784

Keywords

Navigation