Skip to main content
Log in

Synthesis and properties of in situ Si3N4-reinforced BaO·Al2O3·2SiO2 ceramic matrix composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Silicon nitride (94.5% α, 5.5% β), BaCO3, Al2O3, and SiO2 powders were mixed and pressureless sintered to produce a ceramic matrix composite consisting of 30 vol% barium aluminosilicate (BaO·Al2O3·2SiO2 or BAS) matrix reinforced with in situ grown whiskers of β-Si3N4. In situ X-ray studies of the reactions indicated that BaCO3 decomposes first to yield BaO which reacts with SiO2 to yield a series of barium silicates which then react with Al2O3 between 950 and 1300°C to yield hexacelsian BAS. The sintering times were varied in order to develop a material system that combines the favourable properties of BAS with the high strength of Si3N4. In situ high-temperature X-ray studies after composite processing did not reveal any changes in the BAS or Si3N4 up to temperatures of 1300°C. Dilatometry studies of the sintered composite indicated a low-temperature transformation between 230 and 260°C with the temperature of transformation and volume change associated with the hexagonal to orthorhombic transformation decreasing with an increase of sintering time. Room- and high-temperature (1400°C) strengths were evaluated using four-point bend flexural tests. Composites exhibited near theoretical densities and an increase in flexural strength that was primarily dependent on the higher α- to β-Si3N4 transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. BAHAT, J. Mater. Sci. 4 (1969) 855.

    Article  CAS  Google Scholar 

  2. N. P. BANSAL and M. J. HYATT, ibid. 24 (1989) 1257.

    Article  Google Scholar 

  3. C. H. DRUMMOND III, W. E. LEE, N. P. BANSAL and M. J. HYATT, Ceram. Eng Sci. Proc. 9 (1989) 1485.

    Article  Google Scholar 

  4. C. H. DRUMMOND III and N. P. BANSAL, ibid. 11 (1990) 1072.

    Article  CAS  Google Scholar 

  5. N. P. BANSAL, M. J. HYATT and C. H. DRUMMOND III, ibid. 12 (1991) 1222.

    Article  CAS  Google Scholar 

  6. C. H. DRUMMOND III, J. Non-Cryst. Solids 123 (1990) 114.

    Article  CAS  Google Scholar 

  7. I. G. TALMY and D. A. HAUGHT, “Ceramics in the System BaO·Al2O3·SiO2-BaO·Al2O3·2SiO2 for Advanced Radome Application”, NSWCTR 89–162, Naval Surface Warfare Center (1989).

  8. G. ZIEGLER, J. HEINRICH and G. WOTTING, J. Mater. Sci. 22 (1987) 3041.

    Article  CAS  Google Scholar 

  9. K. K. RICHARDSON, D. W. FREITAG and D. L. HUNN, J. Amer. Ceram. Soc. 72 (1995) 2662.

    Article  Google Scholar 

  10. A. BANDYOPADHYAY, S. W. QUANDER, P. B. ASWATH, D. W. FREITAG, K. K. RICHARDSON and D. L. HUNN, Scripta Metall. Mater., 32 (1995) 1417.

    Article  CAS  Google Scholar 

  11. H. C. LIN and W. R. FOSTER, Am. Mineral. 53 (1968) 134.

    CAS  Google Scholar 

  12. B. YOSHIKI and K. MATSUMOTO, J. Am. Ceram. Soc. 34 (1951) 280.

    Article  Google Scholar 

  13. D. BAHAT, J. Mater. Sci. 4 (1969) 855.

    Article  CAS  Google Scholar 

  14. A. BANDYOPADHYAY, P. B. ASWATH, W. D. PORTER and O. B. CAVIN, J. Mater. Res. 10 (1995) 1256.

    Article  CAS  Google Scholar 

  15. ASTM-C20-87, “Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water”, Refractories; Carbon and Graphite Products; Activated Carbon; 15.01 (5-7) (American Society for Testing and Materials, Philadelphia PA, 1993).

    Google Scholar 

  16. C. P. GAZZARA and D. R. MESSIER, Ceram. Bull. 56 (1977) 777.

    CAS  Google Scholar 

  17. MIL-STD-1942A, Department of the Army, Washington DC 20310 (June 1990).

  18. S. HAMPSHIRE, “The Sintering of Nitrogen Ceramics”, Research Reports in Materials Science Series ed.: P. E. Evans (The Parthenon Press, Lancashire, England, 1986) p. 7.

    Google Scholar 

  19. M. J. BUERGER, in “Phase Transformation in Solids” edited by R. Smoluchowski, J. E. Mayer and W. A. Weyl (Chapman and Hall, London, 1951) p. 183.

    Google Scholar 

  20. Y. TAKÉUCHI, Mineral. J. 2 (1958) 311.

    Article  Google Scholar 

  21. H. PICKUP and R. J. BROOK, Br. Ceram. Soc. Proc. 39 (1987) 69.

    CAS  Google Scholar 

  22. G. WOETTING, H. FEUER and E. GUGEL, Mater. Res. Soc. Proc. Silicon Nitride Ceram. 287 (1993) 133.

    Article  CAS  Google Scholar 

  23. G. WOETTING and G. ZIEGLER, Sci. Ceram. 12 (1983) 361.

    Google Scholar 

  24. G. HIMSOLT, H. KNOCH, H. HUEBNER and F. W. KLEINLEIN, J. Am. Ceram. Soc. 62 (1979) 29.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

QUANDER, S.W., BANDYOPADHYAY, A. & ASWATH, P.B. Synthesis and properties of in situ Si3N4-reinforced BaO·Al2O3·2SiO2 ceramic matrix composites. Journal of Materials Science 32, 2021–2029 (1997). https://doi.org/10.1023/A:1018554217839

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018554217839

Keywords

Navigation