Skip to main content
Log in

An experimental study of the interaction of internal cracks in PMMA

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Internal cracks in polymethyl methacrylate (PMMA) specimens were generated by pulsed laser light. The interactions of coplanar cracks, parallel cracks, and cracks in T and H configurations were investigated. The tensile strength of specimens with a single internal crack decreased with increasing crack size, and the strength correlated well with the initial crack and unstable crack size in the Griffith relationship. For specimens with coplanar and parallel cracks, the strength increased and decreased with the crack distance, respectively. For the T and H crack configurations, the presence of delamination cracks decreased the strength, and the reduction in strength became more significant when the crack distance was small. All fracture surfaces showed similar fracture morphology in the sequence of laser-generated crack, smooth fracture mirror, mist with hyperbolic markings, and rough hackle region with rib markings. Examination of the fracture surfaces revealed crack arrest by the delamination cracks in both T and H configurations, and crack bowing between delamination cracks in the H configuration. The propagating crack was eventually able to circumvent the delamination cracks. The experimental results are compared with the available theoretical analyses, and the relevance of the present study to the toughening of brittle materials is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. D. Quinn, J. Am. Ceram. Soc. 74 (1991) 2307.

    Google Scholar 

  2. D. Broek “Elementary Engineering Fracture Mechanics” (Martinus Nijhoff, The Hague, 1982) Ch. 2.

    Book  Google Scholar 

  3. R. N. Parkins and P. M. Singh, Corrosion 46 (1990) 485.

    Article  CAS  Google Scholar 

  4. A. G. Evans, Scripta Metall. 10 (1976) 93.

    Article  Google Scholar 

  5. J. W. Hutchinson, Acta. Metall. 35 (1987) 1605.

    Article  CAS  Google Scholar 

  6. H. Cai and K. T. Faber, J. Appl. Mech. 59 (1992) 497.

    Article  Google Scholar 

  7. V. G. Ukadgaonker and A. P. Naik, Int. J. Fract. 51 (1991) 219.

    Article  Google Scholar 

  8. S. X. Gong, ibid. 66 (1994) R51.

    Article  Google Scholar 

  9. K. Y. Lam and S. P. Phua, Eng. Fract. Mech. 40 (1991) 585.

    Article  Google Scholar 

  10. D. A. Lockner and T. R. Madden, J. Geophys. Res. 96B (1991) 9623.

    Google Scholar 

  11. M. Kachanov and E. Montagut, Eng. Fract. Mech. 25 (1986) 625.

    Article  Google Scholar 

  12. S.-X. Gong and H. Horri, J. Mech. Phys. Solids 37 (1989) 27.

    Article  Google Scholar 

  13. P. E. O’donoghue, T. Nioshika and S. N. Atluri, Int. J. Numer. Meth. Eng. 21 (1985) 437.

    Article  Google Scholar 

  14. M. Isida, K. Hirota, H. Noguchi and T. Yoshida, Int. J. Fract. 27 (1985) 31.

    Article  Google Scholar 

  15. V. I. Fabrikant, Acta Mech. 67 (1987) 39.

    Article  Google Scholar 

  16. M. Kachanov and J.-P. Laures, Int. J. Fract. 41 (1989) 289.

    Article  Google Scholar 

  17. J.-P. Laures and M. Kachanov, ibid. 48 (1991) 255.

    Article  Google Scholar 

  18. M. Yoda, Int. J. Fatigue 11 (1989) 429.

    Article  CAS  Google Scholar 

  19. S. R. Choi and J. A. Salem, J. Mater. Sci. 28 (1993) 501.

    Article  CAS  Google Scholar 

  20. O. S. Minchenkov, N. A. Kostenko and Y. I. Popov, Strength Mater. 22 (1991) 973.

    Article  Google Scholar 

  21. Y. Z. Li and Y. T. Chou, J. Mater. Sci. Lett. 15 (1996) 219.

    Article  CAS  Google Scholar 

  22. Y. Z. Li and Y. T. Chou, Mater. Sci. Eng. A194 (1995) 113.

    Article  CAS  Google Scholar 

  23. G. R. Irwin, Trans. ASME, Ser. E. 85 J. Appl. Mech. 29 (1962) 651.

    Article  Google Scholar 

  24. G. P. Marshall, L. H. Coutts and J. G. Williams, J. Mater. Sci. 9 (1974) 1409.

    Article  CAS  Google Scholar 

  25. Y. Z. Li, M. P. Harmer and Y. T. Chou, J. Mater. Res. 9 (1994) 1780.

    Article  CAS  Google Scholar 

  26. M. Sakai, S. Takeuchi, D. B. Fischbach and R. C. Bradt, in “Ceramic Microstructures: Role of Interfaces”, edited by J. A. Pask and A. G. Evans (Plenum, New York, 1987) p. 869.

    Chapter  Google Scholar 

  27. S. Hori, H. Kaji, M. Yoshimura and S. SŌmiya, in “Advanced Structural Ceramics”, Vol. 78, edited by P. F. Becher, M. V. Swain and S. Sōmiya (Materials Research Society, Pittsburgh, PA, 1987) p. 283.

    Google Scholar 

  28. K. B. Alexander, P. F. Becher and S. B. Waters, in “Proceedings of the 12th International Congress for Electron Microscopy”, edited by L. D. Peachey and D. B. Williams (San Francisco Press, San Francisco, CA, 1990) p. 1032.

    Google Scholar 

  29. F. F. Lange, Philos. Mag. 22 (1970) 983.

    Article  CAS  Google Scholar 

  30. A. G. Evans, ibid. 26 (1972) 1327.

    Article  CAS  Google Scholar 

  31. D. J. Green, J. Am. Ceram. Soc. 66 (1983) C4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LI, Y.Z., CHOU, Y.T. An experimental study of the interaction of internal cracks in PMMA. Journal of Materials Science 32, 1155–1161 (1997). https://doi.org/10.1023/A:1018519631584

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018519631584

Keywords

Navigation