Skip to main content
Log in

Ray-Splitting Billiards

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Ray splitting is a universal phenomenon that occurs with appreciable amplitude in all wave systems when the properties of the system change on a scale smaller than the wave length. We study the quantum implications of ray splitting theoretically and experimentally with the help of ray-splitting billiards in one and two dimensions. We show that Gutzwiller's trace formula works even in the context of ray-splitting systems provided reflection and transmission of waves at ray-splitting boundaries is properly included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. C. Gutzwiller, J. Math. Phys. 8, 1979 (1967); 10, 1004 (1969); 11, 1791 (1970); 12, 343 (1971).

    Google Scholar 

  2. M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, New York, 1990).

    Google Scholar 

  3. L. D. Landau and E. M. Lifschitz, Mechanics (Pergamon, Oxford, 1960).

    Google Scholar 

  4. L. Couchman, E. Ott, and T. M. Antonsen, Jr., Phys. Rev. A 46, 6193 (1992).

    Google Scholar 

  5. R. E. Prange, E. Ott, T. M. Antonsen, Jr., B. Georgeot, and R. Blümel, Phys. Rev. E 53, 207 (1996).

    Google Scholar 

  6. R. Blümel, T. M. Antonsen, Jr., B. Georgeot, E. Ott, and R. E. Prange, Phys. Rev. Lett. 76, 2476 (1996); Phys. Rev. E 53, 3284 (1996).

    Google Scholar 

  7. A. Kohler, G. H. M. Killesreiter, and R. Blümel, Phys. Rev. E 56, 2691 (1997).

    Google Scholar 

  8. A. Kohler and R. Blümel, Phys. Lett. A 238, 271 (1998).

    Google Scholar 

  9. A. Kohler and R. Bluümel, Phys. Lett. A 247, 87 (1998).

    Google Scholar 

  10. A. Kohler and R. Blümel, Ann. Phys. (N.Y.) 267, 249 (1998).

    Google Scholar 

  11. Sz. Bauch, A. Błledowski, L. Sirko, P.M. Koch, and R. Blümel, Phys. Rev. E 57, 304 (1998).

    Google Scholar 

  12. At the time of writing only numerical evidence for the exactness of (12) was available. The computations were performed by Y. Dabaghian, R. V. Jensen, and R. Blümel. Now an analytical proof for the exactness of (12) is available (see Note Added in Proof ).

  13. A. Selberg, J. Indian Math. Soc. B 20, 47 (1956); reprinted in Atle Selberg: Collected Works, Vol. 1 (Springer, Berlin, 1989), pp. 423_463.

    Google Scholar 

  14. K. Anderson and R. Melrose, Invent. Math. 41, 197 (1977).

    Google Scholar 

  15. H.-J. Stöckmann and J. Stein, Phys. Rev. Lett. 64, 2215 (1990).

    Google Scholar 

  16. H. Weyl, Götinger Nachrichten (1911), p. 110.

  17. H. Weyl, Gesammelte Abhandlungen (Springer, Berlin, 1968).

    Google Scholar 

  18. L. Sirko, P. M. Koch, and R. Blümel, Phys. Rev. Lett. 78, 2940 (1997).

    Google Scholar 

  19. J. S. Walker, Fast Fourier Transforms (CRC, Boca Raton, 1991).

    Google Scholar 

  20. Y. Dabaghian, R. V. Jensen, and R. Blümel, submitted to Phys. Rev. E (September 2000).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blümel, R., Koch, P.M. & Sirko, L. Ray-Splitting Billiards. Foundations of Physics 31, 269–281 (2001). https://doi.org/10.1023/A:1017590503566

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017590503566

Keywords

Navigation