Skip to main content
Log in

A novel spectrofluorometric technique for specific biocompatibility testing of implantable materials by cell culture. Report on use for multiparameter analysis of human osteoblasts cultured on commercially pure titanium and hydroxyapatite

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

The authors describe a novel spectrofluorometric technique based on double-labelled fluorescence imaging using immunoconjugates labelled with fluorochromes. Following isolation and characterization, cells are seeded on the surface of disks of the material(s) to be tested. After application of a primary antibody and an antibody bearing a fluorochrome, the signal emitted by the molecules in the extracellular matrix on the surface of the test disks is measured by spectrofluorimetry. Measurement is thus independent of the surface characteristics of the test material. Measured values are compared with pre-established standard curves. This technique facilitates determination of the characteristic molecules expressed by a given cell type,thus allowing accurate evaluation of the response of pertinent biological samples to implantable biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Begg AC and Mooren E (1989) Rapid fluorescence-based assay for radiosensitivity and chemosensitivity testing in mammalian cells in vitro. Cancer Res 49: 565.

    PubMed  CAS  Google Scholar 

  • Beresford JN, Gallagher JA, Posen JW and Russel RG (1984) Production of osteocalcin by human bone cells in vitro. Effects of 1,25 (OH)2D3, 24,25 (OH)2D3, parathyroid hormone and glucocorticoids. Metab Bone Dis Res 5: 229–234.

    Article  CAS  Google Scholar 

  • Bornstein P and Sage H (1980) Structurally distinct collagen types. Ann Rev Biochem 49: 957–1003.

    Article  PubMed  CAS  Google Scholar 

  • Boskey AL (1985) Overview of cellular elements and macromolecules implicated in the initiation of mineralization. In: WT Butler (ed.) The Chemistry and Biology of Mineralized Tissues (pp. 335–343). EBSCO Media, Birmingham.

    Google Scholar 

  • Buser B, Schenk RK, Steinemann S, Fiorellini JP, Fox CH and Stich H (1991) Influence of surface characteristics on bone integration of implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 25: 889–902.

    Article  PubMed  CAS  Google Scholar 

  • Butler WT (1984) Matrix macromolecules of bone and dentin. Coll Relat Res 4: 297–307.

    PubMed  CAS  Google Scholar 

  • Camarda AJ, Butler WT, Finkelman RD and Nanci A (1987) Immunocytochemical localization of γ-carboxyglutamic acidcontaining proteins osteocalcin in rat bone and dentin. Calcif Tissue Int 40: 349–355.

    PubMed  CAS  Google Scholar 

  • Chavassieux P, Chenu C, Delmas P and Meunier JP (1990) Influence of experimental conditions on osteoblast activity in human primary bone cell cultures. J Bone Min Res 5: 337–343.

    CAS  Google Scholar 

  • Cook SD, Kay JF, Thomas KA and Jarcho M (1987) Interface mechanics and histology of titanium and hydroxylapatite-coated titanium for dental implant applications. Int J Oral Maxillofac Implants 2: 15–22.

    PubMed  CAS  Google Scholar 

  • De Groot K, Geesink R, Klein C and Serekian P (1987) Plasma sprayed coatings of hydroxylapatite. J Biomed Mat Res 21: 1375–1381.

    Article  CAS  Google Scholar 

  • Dietrich JW, Canalis EM, Maina DM and Raisz LG (1976) Hormonal control of bone collagen synthesis in vitro: Effects of parathyroid hormone and calcitonin. Endocrinology 98: 943–949.

    Article  PubMed  CAS  Google Scholar 

  • Doglioli P and Scortecci G (1991) Characterization of endosteal osteoblasts isolated from human maxilla and mandibule: An experimental system for biocompatibility tests. Cytotechnology 7:39–48.

    Article  PubMed  CAS  Google Scholar 

  • Ducheyne P (1988) Titanium and calcium phosphate ceramic dental implants, surfaces, coatings and interfaces. J Oral Implant 14:325–340.

    CAS  Google Scholar 

  • Escarot-Charrier B, Glorieux FH, Van der Rest M and Pereira G (1983) Osteoblasts isolated from mouse calvaria initiate matrix mineralization in culture. J Cell Biol 96: 639–643.

    Article  Google Scholar 

  • Gottlander M, Albrektsson T and Carlsson LV (1992) Histomorphometric study of hydroxylapatite-coated and uncoated CP titanium threaded implants in bone. Int J Oral Maxillofac Implants 6: 399–404.

    Google Scholar 

  • Harmand MF, Bordenave L, Duplul R, Jeandot R and Ducassou D (1986) Human differentiated cell cultures: In vitro models for characterization of cells/biomaterial interface. In: Cristel P et al. (eds) Biological and Biochemical Performances of Biomaterials. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Hensten-Patterson A and Liegland K (1977) Evaluation of biologic effects of dental materials using four different cell culture techniques. Scand J Dent Res 85: 291–296.

    Google Scholar 

  • Kasperk C, Wergedal J, Farley J, Ziegler L et al. (1995) Human bone cell phenotypes differ depending on their skeletal site of origin. J Clin Endocrin Metab 80: 2511–2517.

    Article  CAS  Google Scholar 

  • Kay JF, Jarcho M and Logan G (1986) The structure and properties of HA-coatings on metal. Biomaterials 13: 9–15.

    Google Scholar 

  • Kent JN, Block MS and Kay JF (1986) Hydroxylapatite coated and noncoated dental implants in dogs. Biomaterials 16: 172–176.

    Google Scholar 

  • Krauser JT, Boner C and Boner N (1990) Implants dentaires recouverts d'une couche d'hydroxyapatite. Cah Prothèse 71: 57–75.

    Google Scholar 

  • Lowenberg JT, Pillar RM, Aubin JE, Sodek J and Melcher AH (1989) Cell attachment of human gingival fibroblasts in vitro to porous-surfaced titanium alloy discs coated with collagen and platelet-derived growth factor. Biomaterials 9: 423–432.

    Google Scholar 

  • Lum LB, Beirne OR and Curtis DA (1991) Histologic evaluation of hydroxylapatite-coated versus uncoated titanium blade implants in delayed and immediately loaded applications. Int J Oral Maxillofac Implants 6(4): 456–462.

    PubMed  CAS  Google Scholar 

  • Majeska RJ, Rodan SB and Rodan GA (1985) Culture and activity of osteoblasts and osteoblast-like cells. In: Butler WT (ed.) The Chemistry and Biology of Mineralized Tissues. Birmingham, Alabama, EBSCO Media Inc, 279–285.

    Google Scholar 

  • Manduca P, Sanguineti C and Santolini F et al. (1993) Differential expression of alkaline phosphatase in clones of human osteoblast-like cells. J Bone Mineral Res 8: 291–300.

    Article  CAS  Google Scholar 

  • Maurizi M, Binaglia L and Venti Donti G (1983) Morphological and functional characteristics of human temporal bone cell cultures. Cell Tissue Res 229: 505–513.

    Article  PubMed  CAS  Google Scholar 

  • Peck WA, Birge SJ and Fedak SA (1964) Bone cells: Biochemical and biological studies after enzymatic isolation. Science 146: 1476–1477.

    PubMed  CAS  Google Scholar 

  • Price PA, Otsuka AS, Poser JW, Krislaponis J and Raman N (1976) Characterization of a β-carboxyglutamic acid-containing protein from bone. Proc Natl Acad Sci USA 43: 1447–1451.

    Article  Google Scholar 

  • Rat P (1993) New microtitration fluorometric technology: Applications to dermotoxicity. Nouv Dermatol 12: 471.

    Google Scholar 

  • Rey C, Precher M, Lacout JL and Vignoles M (1991) Apatite chemistry in biomaterial preparation, shaping and biological behaviour. In: Bonfield W, Hastings GW and Tannei KE (eds) Bioceramics, Vol. 4, London.

  • Rivero DP, Fox J, Skipor AK, Urban R and Galante JO (1988) Calcium phosphate-coated porous titanium implants for enhanced skeletal fixation. J Biomed Mater Res 22: 191–202.

    Article  PubMed  CAS  Google Scholar 

  • Rodan GA and Rodan SB (1984) Expression of the osteoblastic phenotype. In: Peck WA (ed.) Bone and Mineral Research 2 (pp. 244–285). Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Schroeder A, Van der Zypen E, Stich H and Sutter F (1981) The reactions of bone connective tissue and epithelium to endosteal implants with titanium sprayed surfaces. J Maxillofac Surg 9: 15–25.

    Article  PubMed  CAS  Google Scholar 

  • Scott D, Kent GN and Cohn DV (1980) Collagen synthesis in cultured osteoblast-like cells. Arch Biochem Biophys 201: 384–391.

    Article  PubMed  CAS  Google Scholar 

  • Sennerby L (1991) On the Bone Tissue Response to Titanium Implants. Thesis, University of Göthenburg, Sweden.

    Google Scholar 

  • Smith DM, Johnston CC and Severson AA (1973) Studies of the metabolism of separated bone cells. Calcif Tissue Res 11: pp56-59.

    Google Scholar 

  • Stenner DD, Romberg RW, Tracy RP and Mann KG (1984) Monoclonal antibodies to native noncollagenous bone-specific proteins. Proc Nat Acad Sci USA 81: 2868–2872.

    Article  PubMed  CAS  Google Scholar 

  • Taylor AC (1970) Adhesion of cells to surfaces. In: RS Manly (ed.) Adhesion in Biological Systems. New York, Academic Press.

    Google Scholar 

  • Taylor DL, Amato PA and Tanasugarn T (1986) In: Talor DL and Birge RR (eds) Applications of Fluorescence in the Biomedical Sciences (pp. 347–376). Liss, New York.

    Google Scholar 

  • Termine JD, Belcourt AB, Conn KMand Kleinman HK (1981) Mineral and collagen-binding proteins of fetal calf bone. J Biol Chem 256: 10403–10408.

    PubMed  CAS  Google Scholar 

  • The TH and Feltkamp TEW (1970) Immunology 18: 865–873.

    PubMed  CAS  Google Scholar 

  • Triffitt JT (1987) The special proteins of bone tissue. Clin Sci 72: 399–408.

    PubMed  CAS  Google Scholar 

  • Wergedal JE and Baylink DJ (1984) Characterization of cells isolated and cultured from human bones. Proc Soc Exp Biol Med 176: 27–31.

    Google Scholar 

  • Williams DC, Boder GB, Toomey RE, Paul DC and Hillman Jr, CJ (1980) Mineralization and metabolic response in serial passaged adult rat bone cells. Calcif Tissue Int 30: 233–246.

    Article  PubMed  CAS  Google Scholar 

  • Wong GL and Cohn DV (1975) Target cells in bone for parathormone and calcitonin are different: Enrichment for each cell type by sequential digestion of mouse calvaria and selective adhesion to polymeric surfaces. Proc Natl Acad Sci USA 72: 3167–3171.

    Article  PubMed  CAS  Google Scholar 

  • Ziats NP, Miller KM and Anderson JM (1988) In vitro and in vivo interactions of cells with biomaterials, Biomaterials 9: 5–13.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doglioli, P., Scortecci, G. & Falatouni, M. A novel spectrofluorometric technique for specific biocompatibility testing of implantable materials by cell culture. Report on use for multiparameter analysis of human osteoblasts cultured on commercially pure titanium and hydroxyapatite. Cytotechnology 35, 93–100 (2001). https://doi.org/10.1023/A:1017570815169

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017570815169

Navigation