Skip to main content
Log in

Noise Corrections to Stochastic Trace Formulas

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We review studies of an evolution operator ℒ for a discrete Langevin equation with a strongly hyperbolic classical dynamics and a Gaussian noise. The leading eigenvalue of ℒ yields a physically measurable property of the dynamical system, the escape rate from the repeller. The spectrum of the evolution operator ℒ in the weak noise limit can be computed in several ways. A method using a local matrix representation of the operator allows to push the corrections to the escape rate up to order eight in the noise expansion parameter. These corrections then appear to form a divergent series. Actually, via a cumulant expansion, they relate to analogous divergent series for other quantities, the traces of the evolution operators ℒn. Using an integral representation of the evolution operator ℒ, we then investigate the high order corrections to the latter traces. Their asymptotic behavior is found to be controlled by sub-dominant saddle points previously neglected in the perturbative expansion, and to be ultimately described by a kind of trace formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. E. Aurell, R. Artuso, and P. Cvitanović, Nonlinearity 3, 325 (1990).

    Google Scholar 

  2. E. Aurell, R. Artuso, and P. Cvitanović, Nonlinearity 3, 361 (1990).

    Google Scholar 

  3. P. Cvitanović et al., Classical and Quantum Chaos, http://www.nbi.dk/ChaosBook/ (Niels Bohr Institute, Copenhagen, 1999).

    Google Scholar 

  4. P. Cvitanović, C. P. Dettmann, R. Mainieri, and G. Vattay, J. Stat. Phys. 93, 981 (1998).

    Google Scholar 

  5. P. Cvitanović, C. P. Dettmann, R. Mainieri, and G. Vattay, Nonlinearity 12, 939 (1998).

    Google Scholar 

  6. P. Cvitanovicć, C. P. Dettmann, N. Søndergaard, G. Vattay, and G. Palla, Phys. Rev. E 60, 3936 (1999).

    Google Scholar 

  7. N. Søndergaard, G. Palla, G. Vattay, and A. Voros, J. Stat. Phys. 101, 385 (2000).

    Google Scholar 

  8. D. Alonso and P. Gaspard, Chaos 3, 601 (1993). P. Gaspard and D. Alonso, Phys. Rev. A 47, R3468 (1993).

    Google Scholar 

  9. G. Vattay and P. E.Rosenqvist, Phys. Rev. Let. 76, 335 (1996).

    Google Scholar 

  10. G. Vattay, Phys. Rev. Let. 76, 1059 (1996). 11. M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, New York, 1990).

    Google Scholar 

  11. H. H. Rugh, Nonlinearity 5, 1237 (1992).

    Google Scholar 

  12. S. Bochner and W. T. Martin, Several Complex Variables (Princeton University Press, 1948), Chap. 2, p. 33, formula 14.

  13. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (Dover, New York, 1972), Chap. 6, p. 257, formula 6.1.37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palla, G., Vattay, G., Voros, A. et al. Noise Corrections to Stochastic Trace Formulas. Foundations of Physics 31, 641–657 (2001). https://doi.org/10.1023/A:1017569010085

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017569010085

Keywords

Navigation